Metamath Proof Explorer


Theorem lhpexle2lem

Description: Lemma for lhpexle2 . (Contributed by NM, 19-Jun-2013)

Ref Expression
Hypotheses lhpex1.l ˙=K
lhpex1.a A=AtomsK
lhpex1.h H=LHypK
Assertion lhpexle2lem KHLWHXAX˙WYAY˙WpAp˙WpXpY

Proof

Step Hyp Ref Expression
1 lhpex1.l ˙=K
2 lhpex1.a A=AtomsK
3 lhpex1.h H=LHypK
4 simpl1 KHLWHXAX˙WYAY˙WX=YKHLWH
5 1 2 3 lhpexle1 KHLWHpAp˙WpX
6 4 5 syl KHLWHXAX˙WYAY˙WX=YpAp˙WpX
7 simp3l KHLWHXAX˙WYAY˙WX=Yp˙WpXp˙W
8 simp3r KHLWHXAX˙WYAY˙WX=Yp˙WpXpX
9 simp2 KHLWHXAX˙WYAY˙WX=Yp˙WpXX=Y
10 8 9 neeqtrd KHLWHXAX˙WYAY˙WX=Yp˙WpXpY
11 7 8 10 3jca KHLWHXAX˙WYAY˙WX=Yp˙WpXp˙WpXpY
12 11 3expia KHLWHXAX˙WYAY˙WX=Yp˙WpXp˙WpXpY
13 12 reximdv KHLWHXAX˙WYAY˙WX=YpAp˙WpXpAp˙WpXpY
14 6 13 mpd KHLWHXAX˙WYAY˙WX=YpAp˙WpXpY
15 simpl1l KHLWHXAX˙WYAY˙WXYKHL
16 simpl2l KHLWHXAX˙WYAY˙WXYXA
17 simpl3l KHLWHXAX˙WYAY˙WXYYA
18 simpr KHLWHXAX˙WYAY˙WXYXY
19 eqid joinK=joinK
20 1 19 2 hlsupr KHLXAYAXYpApXpYp˙XjoinKY
21 15 16 17 18 20 syl31anc KHLWHXAX˙WYAY˙WXYpApXpYp˙XjoinKY
22 eqid BaseK=BaseK
23 simpl1l KHLWHXAX˙WYAY˙WXYpApXpYp˙XjoinKYKHL
24 23 hllatd KHLWHXAX˙WYAY˙WXYpApXpYp˙XjoinKYKLat
25 simprlr KHLWHXAX˙WYAY˙WXYpApXpYp˙XjoinKYpA
26 22 2 atbase pApBaseK
27 25 26 syl KHLWHXAX˙WYAY˙WXYpApXpYp˙XjoinKYpBaseK
28 simpl2l KHLWHXAX˙WYAY˙WXYpApXpYp˙XjoinKYXA
29 simpl3l KHLWHXAX˙WYAY˙WXYpApXpYp˙XjoinKYYA
30 22 19 2 hlatjcl KHLXAYAXjoinKYBaseK
31 23 28 29 30 syl3anc KHLWHXAX˙WYAY˙WXYpApXpYp˙XjoinKYXjoinKYBaseK
32 simpl1r KHLWHXAX˙WYAY˙WXYpApXpYp˙XjoinKYWH
33 22 3 lhpbase WHWBaseK
34 32 33 syl KHLWHXAX˙WYAY˙WXYpApXpYp˙XjoinKYWBaseK
35 simprr3 KHLWHXAX˙WYAY˙WXYpApXpYp˙XjoinKYp˙XjoinKY
36 simpl2r KHLWHXAX˙WYAY˙WXYpApXpYp˙XjoinKYX˙W
37 simpl3r KHLWHXAX˙WYAY˙WXYpApXpYp˙XjoinKYY˙W
38 22 2 atbase XAXBaseK
39 28 38 syl KHLWHXAX˙WYAY˙WXYpApXpYp˙XjoinKYXBaseK
40 22 2 atbase YAYBaseK
41 29 40 syl KHLWHXAX˙WYAY˙WXYpApXpYp˙XjoinKYYBaseK
42 22 1 19 latjle12 KLatXBaseKYBaseKWBaseKX˙WY˙WXjoinKY˙W
43 24 39 41 34 42 syl13anc KHLWHXAX˙WYAY˙WXYpApXpYp˙XjoinKYX˙WY˙WXjoinKY˙W
44 36 37 43 mpbi2and KHLWHXAX˙WYAY˙WXYpApXpYp˙XjoinKYXjoinKY˙W
45 22 1 24 27 31 34 35 44 lattrd KHLWHXAX˙WYAY˙WXYpApXpYp˙XjoinKYp˙W
46 simprr1 KHLWHXAX˙WYAY˙WXYpApXpYp˙XjoinKYpX
47 simprr2 KHLWHXAX˙WYAY˙WXYpApXpYp˙XjoinKYpY
48 45 46 47 3jca KHLWHXAX˙WYAY˙WXYpApXpYp˙XjoinKYp˙WpXpY
49 48 exp44 KHLWHXAX˙WYAY˙WXYpApXpYp˙XjoinKYp˙WpXpY
50 49 imp31 KHLWHXAX˙WYAY˙WXYpApXpYp˙XjoinKYp˙WpXpY
51 50 reximdva KHLWHXAX˙WYAY˙WXYpApXpYp˙XjoinKYpAp˙WpXpY
52 21 51 mpd KHLWHXAX˙WYAY˙WXYpAp˙WpXpY
53 14 52 pm2.61dane KHLWHXAX˙WYAY˙WpAp˙WpXpY