Description: Lemma for lhpexle2 . (Contributed by NM, 19-Jun-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lhpex1.l | |
|
lhpex1.a | |
||
lhpex1.h | |
||
Assertion | lhpexle2lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lhpex1.l | |
|
2 | lhpex1.a | |
|
3 | lhpex1.h | |
|
4 | simpl1 | |
|
5 | 1 2 3 | lhpexle1 | |
6 | 4 5 | syl | |
7 | simp3l | |
|
8 | simp3r | |
|
9 | simp2 | |
|
10 | 8 9 | neeqtrd | |
11 | 7 8 10 | 3jca | |
12 | 11 | 3expia | |
13 | 12 | reximdv | |
14 | 6 13 | mpd | |
15 | simpl1l | |
|
16 | simpl2l | |
|
17 | simpl3l | |
|
18 | simpr | |
|
19 | eqid | |
|
20 | 1 19 2 | hlsupr | |
21 | 15 16 17 18 20 | syl31anc | |
22 | eqid | |
|
23 | simpl1l | |
|
24 | 23 | hllatd | |
25 | simprlr | |
|
26 | 22 2 | atbase | |
27 | 25 26 | syl | |
28 | simpl2l | |
|
29 | simpl3l | |
|
30 | 22 19 2 | hlatjcl | |
31 | 23 28 29 30 | syl3anc | |
32 | simpl1r | |
|
33 | 22 3 | lhpbase | |
34 | 32 33 | syl | |
35 | simprr3 | |
|
36 | simpl2r | |
|
37 | simpl3r | |
|
38 | 22 2 | atbase | |
39 | 28 38 | syl | |
40 | 22 2 | atbase | |
41 | 29 40 | syl | |
42 | 22 1 19 | latjle12 | |
43 | 24 39 41 34 42 | syl13anc | |
44 | 36 37 43 | mpbi2and | |
45 | 22 1 24 27 31 34 35 44 | lattrd | |
46 | simprr1 | |
|
47 | simprr2 | |
|
48 | 45 46 47 | 3jca | |
49 | 48 | exp44 | |
50 | 49 | imp31 | |
51 | 50 | reximdva | |
52 | 21 51 | mpd | |
53 | 14 52 | pm2.61dane | |