Metamath Proof Explorer


Theorem lhpmcvr

Description: The meet of a lattice hyperplane with an element not under it is covered by the element. (Contributed by NM, 7-Dec-2012)

Ref Expression
Hypotheses lhpmcvr.b B=BaseK
lhpmcvr.l ˙=K
lhpmcvr.m ˙=meetK
lhpmcvr.c C=K
lhpmcvr.h H=LHypK
Assertion lhpmcvr KHLWHXB¬X˙WX˙WCX

Proof

Step Hyp Ref Expression
1 lhpmcvr.b B=BaseK
2 lhpmcvr.l ˙=K
3 lhpmcvr.m ˙=meetK
4 lhpmcvr.c C=K
5 lhpmcvr.h H=LHypK
6 hllat KHLKLat
7 6 ad2antrr KHLWHXB¬X˙WKLat
8 simprl KHLWHXB¬X˙WXB
9 1 5 lhpbase WHWB
10 9 ad2antlr KHLWHXB¬X˙WWB
11 1 3 latmcom KLatXBWBX˙W=W˙X
12 7 8 10 11 syl3anc KHLWHXB¬X˙WX˙W=W˙X
13 eqid 1.K=1.K
14 13 4 5 lhp1cvr KHLWHWC1.K
15 14 adantr KHLWHXB¬X˙WWC1.K
16 eqid joinK=joinK
17 1 2 16 13 5 lhpj1 KHLWHXB¬X˙WWjoinKX=1.K
18 15 17 breqtrrd KHLWHXB¬X˙WWCWjoinKX
19 simpll KHLWHXB¬X˙WKHL
20 1 16 3 4 cvrexch KHLWBXBW˙XCXWCWjoinKX
21 19 10 8 20 syl3anc KHLWHXB¬X˙WW˙XCXWCWjoinKX
22 18 21 mpbird KHLWHXB¬X˙WW˙XCX
23 12 22 eqbrtrd KHLWHXB¬X˙WX˙WCX