Metamath Proof Explorer


Theorem lhpmod2i2

Description: Modular law for hyperplanes analogous to atmod2i2 for atoms. (Contributed by NM, 9-Feb-2013)

Ref Expression
Hypotheses lhpmod.b B=BaseK
lhpmod.l ˙=K
lhpmod.j ˙=joinK
lhpmod.m ˙=meetK
lhpmod.h H=LHypK
Assertion lhpmod2i2 KHLWHXBYBY˙XX˙W˙Y=X˙W˙Y

Proof

Step Hyp Ref Expression
1 lhpmod.b B=BaseK
2 lhpmod.l ˙=K
3 lhpmod.j ˙=joinK
4 lhpmod.m ˙=meetK
5 lhpmod.h H=LHypK
6 simp1l KHLWHXBYBY˙XKHL
7 simp1r KHLWHXBYBY˙XWH
8 eqid ocK=ocK
9 eqid AtomsK=AtomsK
10 8 9 5 lhpocat KHLWHocKWAtomsK
11 6 7 10 syl2anc KHLWHXBYBY˙XocKWAtomsK
12 hlop KHLKOP
13 6 12 syl KHLWHXBYBY˙XKOP
14 simp2l KHLWHXBYBY˙XXB
15 1 8 opoccl KOPXBocKXB
16 13 14 15 syl2anc KHLWHXBYBY˙XocKXB
17 simp2r KHLWHXBYBY˙XYB
18 1 8 opoccl KOPYBocKYB
19 13 17 18 syl2anc KHLWHXBYBY˙XocKYB
20 simp3 KHLWHXBYBY˙XY˙X
21 1 2 8 oplecon3b KOPYBXBY˙XocKX˙ocKY
22 13 17 14 21 syl3anc KHLWHXBYBY˙XY˙XocKX˙ocKY
23 20 22 mpbid KHLWHXBYBY˙XocKX˙ocKY
24 1 2 3 4 9 atmod1i2 KHLocKWAtomsKocKXBocKYBocKX˙ocKYocKX˙ocKW˙ocKY=ocKX˙ocKW˙ocKY
25 6 11 16 19 23 24 syl131anc KHLWHXBYBY˙XocKX˙ocKW˙ocKY=ocKX˙ocKW˙ocKY
26 6 hllatd KHLWHXBYBY˙XKLat
27 1 5 lhpbase WHWB
28 7 27 syl KHLWHXBYBY˙XWB
29 1 4 latmcl KLatXBWBX˙WB
30 26 14 28 29 syl3anc KHLWHXBYBY˙XX˙WB
31 1 3 latjcl KLatX˙WBYBX˙W˙YB
32 26 30 17 31 syl3anc KHLWHXBYBY˙XX˙W˙YB
33 1 3 latjcl KLatWBYBW˙YB
34 26 28 17 33 syl3anc KHLWHXBYBY˙XW˙YB
35 1 4 latmcl KLatXBW˙YBX˙W˙YB
36 26 14 34 35 syl3anc KHLWHXBYBY˙XX˙W˙YB
37 1 8 opcon3b KOPX˙W˙YBX˙W˙YBX˙W˙Y=X˙W˙YocKX˙W˙Y=ocKX˙W˙Y
38 13 32 36 37 syl3anc KHLWHXBYBY˙XX˙W˙Y=X˙W˙YocKX˙W˙Y=ocKX˙W˙Y
39 hlol KHLKOL
40 6 39 syl KHLWHXBYBY˙XKOL
41 1 3 4 8 oldmm1 KOLXBW˙YBocKX˙W˙Y=ocKX˙ocKW˙Y
42 40 14 34 41 syl3anc KHLWHXBYBY˙XocKX˙W˙Y=ocKX˙ocKW˙Y
43 1 3 4 8 oldmj1 KOLWBYBocKW˙Y=ocKW˙ocKY
44 40 28 17 43 syl3anc KHLWHXBYBY˙XocKW˙Y=ocKW˙ocKY
45 44 oveq2d KHLWHXBYBY˙XocKX˙ocKW˙Y=ocKX˙ocKW˙ocKY
46 42 45 eqtrd KHLWHXBYBY˙XocKX˙W˙Y=ocKX˙ocKW˙ocKY
47 1 3 4 8 oldmj1 KOLX˙WBYBocKX˙W˙Y=ocKX˙W˙ocKY
48 40 30 17 47 syl3anc KHLWHXBYBY˙XocKX˙W˙Y=ocKX˙W˙ocKY
49 1 3 4 8 oldmm1 KOLXBWBocKX˙W=ocKX˙ocKW
50 40 14 28 49 syl3anc KHLWHXBYBY˙XocKX˙W=ocKX˙ocKW
51 50 oveq1d KHLWHXBYBY˙XocKX˙W˙ocKY=ocKX˙ocKW˙ocKY
52 48 51 eqtrd KHLWHXBYBY˙XocKX˙W˙Y=ocKX˙ocKW˙ocKY
53 46 52 eqeq12d KHLWHXBYBY˙XocKX˙W˙Y=ocKX˙W˙YocKX˙ocKW˙ocKY=ocKX˙ocKW˙ocKY
54 38 53 bitrd KHLWHXBYBY˙XX˙W˙Y=X˙W˙YocKX˙ocKW˙ocKY=ocKX˙ocKW˙ocKY
55 25 54 mpbird KHLWHXBYBY˙XX˙W˙Y=X˙W˙Y