Description: Modular law for hyperplanes analogous to atmod2i2 for atoms. (Contributed by NM, 9-Feb-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lhpmod.b | |
|
lhpmod.l | |
||
lhpmod.j | |
||
lhpmod.m | |
||
lhpmod.h | |
||
Assertion | lhpmod2i2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lhpmod.b | |
|
2 | lhpmod.l | |
|
3 | lhpmod.j | |
|
4 | lhpmod.m | |
|
5 | lhpmod.h | |
|
6 | simp1l | |
|
7 | simp1r | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | 8 9 5 | lhpocat | |
11 | 6 7 10 | syl2anc | |
12 | hlop | |
|
13 | 6 12 | syl | |
14 | simp2l | |
|
15 | 1 8 | opoccl | |
16 | 13 14 15 | syl2anc | |
17 | simp2r | |
|
18 | 1 8 | opoccl | |
19 | 13 17 18 | syl2anc | |
20 | simp3 | |
|
21 | 1 2 8 | oplecon3b | |
22 | 13 17 14 21 | syl3anc | |
23 | 20 22 | mpbid | |
24 | 1 2 3 4 9 | atmod1i2 | |
25 | 6 11 16 19 23 24 | syl131anc | |
26 | 6 | hllatd | |
27 | 1 5 | lhpbase | |
28 | 7 27 | syl | |
29 | 1 4 | latmcl | |
30 | 26 14 28 29 | syl3anc | |
31 | 1 3 | latjcl | |
32 | 26 30 17 31 | syl3anc | |
33 | 1 3 | latjcl | |
34 | 26 28 17 33 | syl3anc | |
35 | 1 4 | latmcl | |
36 | 26 14 34 35 | syl3anc | |
37 | 1 8 | opcon3b | |
38 | 13 32 36 37 | syl3anc | |
39 | hlol | |
|
40 | 6 39 | syl | |
41 | 1 3 4 8 | oldmm1 | |
42 | 40 14 34 41 | syl3anc | |
43 | 1 3 4 8 | oldmj1 | |
44 | 40 28 17 43 | syl3anc | |
45 | 44 | oveq2d | |
46 | 42 45 | eqtrd | |
47 | 1 3 4 8 | oldmj1 | |
48 | 40 30 17 47 | syl3anc | |
49 | 1 3 4 8 | oldmm1 | |
50 | 40 14 28 49 | syl3anc | |
51 | 50 | oveq1d | |
52 | 48 51 | eqtrd | |
53 | 46 52 | eqeq12d | |
54 | 38 53 | bitrd | |
55 | 25 54 | mpbird | |