Metamath Proof Explorer


Theorem liminfgelimsupuz

Description: The inferior limit is greater than or equal to the superior limit if and only if they are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses liminfgelimsupuz.1 φM
liminfgelimsupuz.2 Z=M
liminfgelimsupuz.3 φF:Z*
Assertion liminfgelimsupuz φlim supFlim infFlim infF=lim supF

Proof

Step Hyp Ref Expression
1 liminfgelimsupuz.1 φM
2 liminfgelimsupuz.2 Z=M
3 liminfgelimsupuz.3 φF:Z*
4 2 fvexi ZV
5 4 a1i φZV
6 3 5 fexd φFV
7 6 liminfcld φlim infF*
8 7 adantr φlim supFlim infFlim infF*
9 6 limsupcld φlim supF*
10 9 adantr φlim supFlim infFlim supF*
11 1 2 3 liminflelimsupuz φlim infFlim supF
12 11 adantr φlim supFlim infFlim infFlim supF
13 simpr φlim supFlim infFlim supFlim infF
14 8 10 12 13 xrletrid φlim supFlim infFlim infF=lim supF
15 9 adantr φlim infF=lim supFlim supF*
16 id lim infF=lim supFlim infF=lim supF
17 16 eqcomd lim infF=lim supFlim supF=lim infF
18 17 adantl φlim infF=lim supFlim supF=lim infF
19 15 18 xreqled φlim infF=lim supFlim supFlim infF
20 14 19 impbida φlim supFlim infFlim infF=lim supF