Description: The inferior limit is greater than or equal to the superior limit if and only if they are equal. (Contributed by Glauco Siliprandi, 2-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | liminfgelimsupuz.1 | |
|
liminfgelimsupuz.2 | |
||
liminfgelimsupuz.3 | |
||
Assertion | liminfgelimsupuz | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | liminfgelimsupuz.1 | |
|
2 | liminfgelimsupuz.2 | |
|
3 | liminfgelimsupuz.3 | |
|
4 | 2 | fvexi | |
5 | 4 | a1i | |
6 | 3 5 | fexd | |
7 | 6 | liminfcld | |
8 | 7 | adantr | |
9 | 6 | limsupcld | |
10 | 9 | adantr | |
11 | 1 2 3 | liminflelimsupuz | |
12 | 11 | adantr | |
13 | simpr | |
|
14 | 8 10 12 13 | xrletrid | |
15 | 9 | adantr | |
16 | id | |
|
17 | 16 | eqcomd | |
18 | 17 | adantl | |
19 | 15 18 | xreqled | |
20 | 14 19 | impbida | |