Metamath Proof Explorer


Theorem limsupbnd1

Description: If a sequence is eventually at most A , then the limsup is also at most A . (The converse is only true if the less or equal is replaced by strictly less than; consider the sequence 1 / n which is never less or equal to zero even though the limsup is.) (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 12-Sep-2020)

Ref Expression
Hypotheses limsupbnd.1 φB
limsupbnd.2 φF:B*
limsupbnd.3 φA*
limsupbnd1.4 φkjBkjFjA
Assertion limsupbnd1 φlim supFA

Proof

Step Hyp Ref Expression
1 limsupbnd.1 φB
2 limsupbnd.2 φF:B*
3 limsupbnd.3 φA*
4 limsupbnd1.4 φkjBkjFjA
5 1 adantr φkB
6 2 adantr φkF:B*
7 simpr φkk
8 3 adantr φkA*
9 eqid nsupFn+∞**<=nsupFn+∞**<
10 9 limsupgle BF:B*kA*nsupFn+∞**<kAjBkjFjA
11 5 6 7 8 10 syl211anc φknsupFn+∞**<kAjBkjFjA
12 reex V
13 12 ssex BBV
14 1 13 syl φBV
15 xrex *V
16 15 a1i φ*V
17 fex2 F:B*BV*VFV
18 2 14 16 17 syl3anc φFV
19 limsupcl FVlim supF*
20 18 19 syl φlim supF*
21 20 xrleidd φlim supFlim supF
22 9 limsuple BF:B*lim supF*lim supFlim supFklim supFnsupFn+∞**<k
23 1 2 20 22 syl3anc φlim supFlim supFklim supFnsupFn+∞**<k
24 21 23 mpbid φklim supFnsupFn+∞**<k
25 24 r19.21bi φklim supFnsupFn+∞**<k
26 20 adantr φklim supF*
27 9 limsupgf nsupFn+∞**<:*
28 27 a1i φnsupFn+∞**<:*
29 28 ffvelcdmda φknsupFn+∞**<k*
30 xrletr lim supF*nsupFn+∞**<k*A*lim supFnsupFn+∞**<knsupFn+∞**<kAlim supFA
31 26 29 8 30 syl3anc φklim supFnsupFn+∞**<knsupFn+∞**<kAlim supFA
32 25 31 mpand φknsupFn+∞**<kAlim supFA
33 11 32 sylbird φkjBkjFjAlim supFA
34 33 rexlimdva φkjBkjFjAlim supFA
35 4 34 mpd φlim supFA