Metamath Proof Explorer


Theorem linply1

Description: A term of the form x - C is a (univariate) polynomial, also called "linear polynomial". (Part of ply1remlem ). (Contributed by AV, 3-Jul-2019)

Ref Expression
Hypotheses linply1.p P=Poly1R
linply1.b B=BaseP
linply1.k K=BaseR
linply1.x X=var1R
linply1.m -˙=-P
linply1.a A=algScP
linply1.g G=X-˙AC
linply1.c φCK
linply1.r φRRing
Assertion linply1 φGB

Proof

Step Hyp Ref Expression
1 linply1.p P=Poly1R
2 linply1.b B=BaseP
3 linply1.k K=BaseR
4 linply1.x X=var1R
5 linply1.m -˙=-P
6 linply1.a A=algScP
7 linply1.g G=X-˙AC
8 linply1.c φCK
9 linply1.r φRRing
10 1 ply1ring RRingPRing
11 ringgrp PRingPGrp
12 9 10 11 3syl φPGrp
13 4 1 2 vr1cl RRingXB
14 9 13 syl φXB
15 1 6 3 2 ply1sclf RRingA:KB
16 9 15 syl φA:KB
17 16 8 ffvelcdmd φACB
18 2 5 grpsubcl PGrpXBACBX-˙ACB
19 12 14 17 18 syl3anc φX-˙ACB
20 7 19 eqeltrid φGB