Metamath Proof Explorer


Theorem lkrlsp3

Description: The subspace sum of a kernel and the span of a vector not in the kernel is the whole vector space. (Contributed by NM, 29-Jun-2014)

Ref Expression
Hypotheses lkrlsp3.v V=BaseW
lkrlsp3.n N=LSpanW
lkrlsp3.f F=LFnlW
lkrlsp3.k K=LKerW
Assertion lkrlsp3 WLVecXVGF¬XKGNKGX=V

Proof

Step Hyp Ref Expression
1 lkrlsp3.v V=BaseW
2 lkrlsp3.n N=LSpanW
3 lkrlsp3.f F=LFnlW
4 lkrlsp3.k K=LKerW
5 lveclmod WLVecWLMod
6 5 3ad2ant1 WLVecXVGF¬XKGWLMod
7 simp2r WLVecXVGF¬XKGGF
8 eqid LSubSpW=LSubSpW
9 3 4 8 lkrlss WLModGFKGLSubSpW
10 6 7 9 syl2anc WLVecXVGF¬XKGKGLSubSpW
11 8 2 lspid WLModKGLSubSpWNKG=KG
12 6 10 11 syl2anc WLVecXVGF¬XKGNKG=KG
13 12 uneq1d WLVecXVGF¬XKGNKGNX=KGNX
14 13 fveq2d WLVecXVGF¬XKGNNKGNX=NKGNX
15 1 3 4 6 7 lkrssv WLVecXVGF¬XKGKGV
16 simp2l WLVecXVGF¬XKGXV
17 16 snssd WLVecXVGF¬XKGXV
18 1 2 lspun WLModKGVXVNKGX=NNKGNX
19 6 15 17 18 syl3anc WLVecXVGF¬XKGNKGX=NNKGNX
20 1 8 2 lspsncl WLModXVNXLSubSpW
21 6 16 20 syl2anc WLVecXVGF¬XKGNXLSubSpW
22 eqid LSSumW=LSSumW
23 8 2 22 lsmsp WLModKGLSubSpWNXLSubSpWKGLSSumWNX=NKGNX
24 6 10 21 23 syl3anc WLVecXVGF¬XKGKGLSSumWNX=NKGNX
25 14 19 24 3eqtr4d WLVecXVGF¬XKGNKGX=KGLSSumWNX
26 1 2 22 3 4 lkrlsp2 WLVecXVGF¬XKGKGLSSumWNX=V
27 25 26 eqtrd WLVecXVGF¬XKGNKGX=V