Metamath Proof Explorer


Theorem llncvrlpln2

Description: A lattice line under a lattice plane is covered by it. (Contributed by NM, 24-Jun-2012)

Ref Expression
Hypotheses llncvrlpln2.l ˙=K
llncvrlpln2.c C=K
llncvrlpln2.n N=LLinesK
llncvrlpln2.p P=LPlanesK
Assertion llncvrlpln2 KHLXNYPX˙YXCY

Proof

Step Hyp Ref Expression
1 llncvrlpln2.l ˙=K
2 llncvrlpln2.c C=K
3 llncvrlpln2.n N=LLinesK
4 llncvrlpln2.p P=LPlanesK
5 simpr KHLXNYPX˙YX˙Y
6 simpl1 KHLXNYPX˙YKHL
7 simpl3 KHLXNYPX˙YYP
8 3 4 lplnnelln KHLYP¬YN
9 6 7 8 syl2anc KHLXNYPX˙Y¬YN
10 simpl2 KHLXNYPX˙YXN
11 eleq1 X=YXNYN
12 10 11 syl5ibcom KHLXNYPX˙YX=YYN
13 12 necon3bd KHLXNYPX˙Y¬YNXY
14 9 13 mpd KHLXNYPX˙YXY
15 eqid <K=<K
16 1 15 pltval KHLXNYPX<KYX˙YXY
17 16 adantr KHLXNYPX˙YX<KYX˙YXY
18 5 14 17 mpbir2and KHLXNYPX˙YX<KY
19 simpl1 KHLXNYPX<KYKHL
20 simpl2 KHLXNYPX<KYXN
21 eqid BaseK=BaseK
22 21 3 llnbase XNXBaseK
23 20 22 syl KHLXNYPX<KYXBaseK
24 simpl3 KHLXNYPX<KYYP
25 21 4 lplnbase YPYBaseK
26 24 25 syl KHLXNYPX<KYYBaseK
27 simpr KHLXNYPX<KYX<KY
28 eqid joinK=joinK
29 eqid AtomsK=AtomsK
30 21 1 15 28 2 29 hlrelat3 KHLXBaseKYBaseKX<KYrAtomsKXCXjoinKrXjoinKr˙Y
31 19 23 26 27 30 syl31anc KHLXNYPX<KYrAtomsKXCXjoinKrXjoinKr˙Y
32 21 1 28 29 4 islpln2 KHLYPYBaseKsAtomsKtAtomsKuAtomsKst¬u˙sjoinKtY=sjoinKtjoinKu
33 32 adantr KHLXNYPYBaseKsAtomsKtAtomsKuAtomsKst¬u˙sjoinKtY=sjoinKtjoinKu
34 simp3 st¬u˙sjoinKtY=sjoinKtjoinKuY=sjoinKtjoinKu
35 21 28 29 3 islln2 KHLXNXBaseKpAtomsKqAtomsKpqX=pjoinKq
36 simp3l KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YXCXjoinKr
37 simp3r KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YXjoinKr˙Y
38 simp12r KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YX=pjoinKq
39 38 oveq1d KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YXjoinKr=pjoinKqjoinKr
40 simp22 KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YY=sjoinKtjoinKu
41 37 39 40 3brtr3d KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YpjoinKqjoinKr˙sjoinKtjoinKu
42 simp111 KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YKHL
43 simp112 KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YpAtomsK
44 simp113 KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YqAtomsK
45 simp23 KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YrAtomsK
46 43 44 45 3jca KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YpAtomsKqAtomsKrAtomsK
47 simp13l KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YsAtomsK
48 simp13r KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YtAtomsK
49 simp21 KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YuAtomsK
50 47 48 49 3jca KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YsAtomsKtAtomsKuAtomsK
51 36 38 39 3brtr3d KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YpjoinKqCpjoinKqjoinKr
52 21 28 29 hlatjcl KHLpAtomsKqAtomsKpjoinKqBaseK
53 42 43 44 52 syl3anc KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YpjoinKqBaseK
54 21 1 28 2 29 cvr1 KHLpjoinKqBaseKrAtomsK¬r˙pjoinKqpjoinKqCpjoinKqjoinKr
55 42 53 45 54 syl3anc KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙Y¬r˙pjoinKqpjoinKqCpjoinKqjoinKr
56 51 55 mpbird KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙Y¬r˙pjoinKq
57 simp12l KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙Ypq
58 1 28 29 3at KHLpAtomsKqAtomsKrAtomsKsAtomsKtAtomsKuAtomsK¬r˙pjoinKqpqpjoinKqjoinKr˙sjoinKtjoinKupjoinKqjoinKr=sjoinKtjoinKu
59 42 46 50 56 57 58 syl32anc KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YpjoinKqjoinKr˙sjoinKtjoinKupjoinKqjoinKr=sjoinKtjoinKu
60 41 59 mpbid KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YpjoinKqjoinKr=sjoinKtjoinKu
61 60 39 40 3eqtr4d KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YXjoinKr=Y
62 36 61 breqtrd KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YXCY
63 62 3exp KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YXCY
64 63 3expd KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YXCY
65 64 3exp KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YXCY
66 65 3expib KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YXCY
67 66 rexlimdvv KHLpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YXCY
68 67 adantld KHLXBaseKpAtomsKqAtomsKpqX=pjoinKqsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YXCY
69 35 68 sylbid KHLXNsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YXCY
70 69 imp31 KHLXNsAtomsKtAtomsKuAtomsKY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YXCY
71 34 70 syl7 KHLXNsAtomsKtAtomsKuAtomsKst¬u˙sjoinKtY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YXCY
72 71 rexlimdv KHLXNsAtomsKtAtomsKuAtomsKst¬u˙sjoinKtY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YXCY
73 72 rexlimdvva KHLXNsAtomsKtAtomsKuAtomsKst¬u˙sjoinKtY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YXCY
74 73 adantld KHLXNYBaseKsAtomsKtAtomsKuAtomsKst¬u˙sjoinKtY=sjoinKtjoinKurAtomsKXCXjoinKrXjoinKr˙YXCY
75 33 74 sylbid KHLXNYPrAtomsKXCXjoinKrXjoinKr˙YXCY
76 75 3impia KHLXNYPrAtomsKXCXjoinKrXjoinKr˙YXCY
77 76 rexlimdv KHLXNYPrAtomsKXCXjoinKrXjoinKr˙YXCY
78 77 imp KHLXNYPrAtomsKXCXjoinKrXjoinKr˙YXCY
79 31 78 syldan KHLXNYPX<KYXCY
80 18 79 syldan KHLXNYPX˙YXCY