Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Projective geometries based on Hilbert lattices
llncvrlpln2
Next ⟩
llncvrlpln
Metamath Proof Explorer
Ascii
Unicode
Theorem
llncvrlpln2
Description:
A lattice line under a lattice plane is covered by it.
(Contributed by
NM
, 24-Jun-2012)
Ref
Expression
Hypotheses
llncvrlpln2.l
⊢
≤
˙
=
≤
K
llncvrlpln2.c
⊢
C
=
⋖
K
llncvrlpln2.n
⊢
N
=
LLines
K
llncvrlpln2.p
⊢
P
=
LPlanes
K
Assertion
llncvrlpln2
⊢
K
∈
HL
∧
X
∈
N
∧
Y
∈
P
∧
X
≤
˙
Y
→
X
C
Y
Proof
Step
Hyp
Ref
Expression
1
llncvrlpln2.l
⊢
≤
˙
=
≤
K
2
llncvrlpln2.c
⊢
C
=
⋖
K
3
llncvrlpln2.n
⊢
N
=
LLines
K
4
llncvrlpln2.p
⊢
P
=
LPlanes
K
5
simpr
⊢
K
∈
HL
∧
X
∈
N
∧
Y
∈
P
∧
X
≤
˙
Y
→
X
≤
˙
Y
6
simpl1
⊢
K
∈
HL
∧
X
∈
N
∧
Y
∈
P
∧
X
≤
˙
Y
→
K
∈
HL
7
simpl3
⊢
K
∈
HL
∧
X
∈
N
∧
Y
∈
P
∧
X
≤
˙
Y
→
Y
∈
P
8
3
4
lplnnelln
⊢
K
∈
HL
∧
Y
∈
P
→
¬
Y
∈
N
9
6
7
8
syl2anc
⊢
K
∈
HL
∧
X
∈
N
∧
Y
∈
P
∧
X
≤
˙
Y
→
¬
Y
∈
N
10
simpl2
⊢
K
∈
HL
∧
X
∈
N
∧
Y
∈
P
∧
X
≤
˙
Y
→
X
∈
N
11
eleq1
⊢
X
=
Y
→
X
∈
N
↔
Y
∈
N
12
10
11
syl5ibcom
⊢
K
∈
HL
∧
X
∈
N
∧
Y
∈
P
∧
X
≤
˙
Y
→
X
=
Y
→
Y
∈
N
13
12
necon3bd
⊢
K
∈
HL
∧
X
∈
N
∧
Y
∈
P
∧
X
≤
˙
Y
→
¬
Y
∈
N
→
X
≠
Y
14
9
13
mpd
⊢
K
∈
HL
∧
X
∈
N
∧
Y
∈
P
∧
X
≤
˙
Y
→
X
≠
Y
15
eqid
⊢
<
K
=
<
K
16
1
15
pltval
⊢
K
∈
HL
∧
X
∈
N
∧
Y
∈
P
→
X
<
K
Y
↔
X
≤
˙
Y
∧
X
≠
Y
17
16
adantr
⊢
K
∈
HL
∧
X
∈
N
∧
Y
∈
P
∧
X
≤
˙
Y
→
X
<
K
Y
↔
X
≤
˙
Y
∧
X
≠
Y
18
5
14
17
mpbir2and
⊢
K
∈
HL
∧
X
∈
N
∧
Y
∈
P
∧
X
≤
˙
Y
→
X
<
K
Y
19
simpl1
⊢
K
∈
HL
∧
X
∈
N
∧
Y
∈
P
∧
X
<
K
Y
→
K
∈
HL
20
simpl2
⊢
K
∈
HL
∧
X
∈
N
∧
Y
∈
P
∧
X
<
K
Y
→
X
∈
N
21
eqid
⊢
Base
K
=
Base
K
22
21
3
llnbase
⊢
X
∈
N
→
X
∈
Base
K
23
20
22
syl
⊢
K
∈
HL
∧
X
∈
N
∧
Y
∈
P
∧
X
<
K
Y
→
X
∈
Base
K
24
simpl3
⊢
K
∈
HL
∧
X
∈
N
∧
Y
∈
P
∧
X
<
K
Y
→
Y
∈
P
25
21
4
lplnbase
⊢
Y
∈
P
→
Y
∈
Base
K
26
24
25
syl
⊢
K
∈
HL
∧
X
∈
N
∧
Y
∈
P
∧
X
<
K
Y
→
Y
∈
Base
K
27
simpr
⊢
K
∈
HL
∧
X
∈
N
∧
Y
∈
P
∧
X
<
K
Y
→
X
<
K
Y
28
eqid
⊢
join
K
=
join
K
29
eqid
⊢
Atoms
K
=
Atoms
K
30
21
1
15
28
2
29
hlrelat3
⊢
K
∈
HL
∧
X
∈
Base
K
∧
Y
∈
Base
K
∧
X
<
K
Y
→
∃
r
∈
Atoms
K
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
31
19
23
26
27
30
syl31anc
⊢
K
∈
HL
∧
X
∈
N
∧
Y
∈
P
∧
X
<
K
Y
→
∃
r
∈
Atoms
K
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
32
21
1
28
29
4
islpln2
⊢
K
∈
HL
→
Y
∈
P
↔
Y
∈
Base
K
∧
∃
s
∈
Atoms
K
∃
t
∈
Atoms
K
∃
u
∈
Atoms
K
s
≠
t
∧
¬
u
≤
˙
s
join
K
t
∧
Y
=
s
join
K
t
join
K
u
33
32
adantr
⊢
K
∈
HL
∧
X
∈
N
→
Y
∈
P
↔
Y
∈
Base
K
∧
∃
s
∈
Atoms
K
∃
t
∈
Atoms
K
∃
u
∈
Atoms
K
s
≠
t
∧
¬
u
≤
˙
s
join
K
t
∧
Y
=
s
join
K
t
join
K
u
34
simp3
⊢
s
≠
t
∧
¬
u
≤
˙
s
join
K
t
∧
Y
=
s
join
K
t
join
K
u
→
Y
=
s
join
K
t
join
K
u
35
21
28
29
3
islln2
⊢
K
∈
HL
→
X
∈
N
↔
X
∈
Base
K
∧
∃
p
∈
Atoms
K
∃
q
∈
Atoms
K
p
≠
q
∧
X
=
p
join
K
q
36
simp3l
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
p
≠
q
∧
X
=
p
join
K
q
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
∧
u
∈
Atoms
K
∧
Y
=
s
join
K
t
join
K
u
∧
r
∈
Atoms
K
∧
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
X
C
X
join
K
r
37
simp3r
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
p
≠
q
∧
X
=
p
join
K
q
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
∧
u
∈
Atoms
K
∧
Y
=
s
join
K
t
join
K
u
∧
r
∈
Atoms
K
∧
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
X
join
K
r
≤
˙
Y
38
simp12r
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
p
≠
q
∧
X
=
p
join
K
q
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
∧
u
∈
Atoms
K
∧
Y
=
s
join
K
t
join
K
u
∧
r
∈
Atoms
K
∧
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
X
=
p
join
K
q
39
38
oveq1d
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
p
≠
q
∧
X
=
p
join
K
q
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
∧
u
∈
Atoms
K
∧
Y
=
s
join
K
t
join
K
u
∧
r
∈
Atoms
K
∧
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
X
join
K
r
=
p
join
K
q
join
K
r
40
simp22
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
p
≠
q
∧
X
=
p
join
K
q
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
∧
u
∈
Atoms
K
∧
Y
=
s
join
K
t
join
K
u
∧
r
∈
Atoms
K
∧
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
Y
=
s
join
K
t
join
K
u
41
37
39
40
3brtr3d
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
p
≠
q
∧
X
=
p
join
K
q
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
∧
u
∈
Atoms
K
∧
Y
=
s
join
K
t
join
K
u
∧
r
∈
Atoms
K
∧
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
p
join
K
q
join
K
r
≤
˙
s
join
K
t
join
K
u
42
simp111
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
p
≠
q
∧
X
=
p
join
K
q
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
∧
u
∈
Atoms
K
∧
Y
=
s
join
K
t
join
K
u
∧
r
∈
Atoms
K
∧
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
K
∈
HL
43
simp112
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
p
≠
q
∧
X
=
p
join
K
q
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
∧
u
∈
Atoms
K
∧
Y
=
s
join
K
t
join
K
u
∧
r
∈
Atoms
K
∧
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
p
∈
Atoms
K
44
simp113
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
p
≠
q
∧
X
=
p
join
K
q
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
∧
u
∈
Atoms
K
∧
Y
=
s
join
K
t
join
K
u
∧
r
∈
Atoms
K
∧
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
q
∈
Atoms
K
45
simp23
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
p
≠
q
∧
X
=
p
join
K
q
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
∧
u
∈
Atoms
K
∧
Y
=
s
join
K
t
join
K
u
∧
r
∈
Atoms
K
∧
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
r
∈
Atoms
K
46
43
44
45
3jca
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
p
≠
q
∧
X
=
p
join
K
q
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
∧
u
∈
Atoms
K
∧
Y
=
s
join
K
t
join
K
u
∧
r
∈
Atoms
K
∧
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
r
∈
Atoms
K
47
simp13l
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
p
≠
q
∧
X
=
p
join
K
q
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
∧
u
∈
Atoms
K
∧
Y
=
s
join
K
t
join
K
u
∧
r
∈
Atoms
K
∧
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
s
∈
Atoms
K
48
simp13r
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
p
≠
q
∧
X
=
p
join
K
q
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
∧
u
∈
Atoms
K
∧
Y
=
s
join
K
t
join
K
u
∧
r
∈
Atoms
K
∧
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
t
∈
Atoms
K
49
simp21
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
p
≠
q
∧
X
=
p
join
K
q
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
∧
u
∈
Atoms
K
∧
Y
=
s
join
K
t
join
K
u
∧
r
∈
Atoms
K
∧
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
u
∈
Atoms
K
50
47
48
49
3jca
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
p
≠
q
∧
X
=
p
join
K
q
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
∧
u
∈
Atoms
K
∧
Y
=
s
join
K
t
join
K
u
∧
r
∈
Atoms
K
∧
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
s
∈
Atoms
K
∧
t
∈
Atoms
K
∧
u
∈
Atoms
K
51
36
38
39
3brtr3d
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
p
≠
q
∧
X
=
p
join
K
q
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
∧
u
∈
Atoms
K
∧
Y
=
s
join
K
t
join
K
u
∧
r
∈
Atoms
K
∧
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
p
join
K
q
C
p
join
K
q
join
K
r
52
21
28
29
hlatjcl
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
→
p
join
K
q
∈
Base
K
53
42
43
44
52
syl3anc
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
p
≠
q
∧
X
=
p
join
K
q
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
∧
u
∈
Atoms
K
∧
Y
=
s
join
K
t
join
K
u
∧
r
∈
Atoms
K
∧
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
p
join
K
q
∈
Base
K
54
21
1
28
2
29
cvr1
⊢
K
∈
HL
∧
p
join
K
q
∈
Base
K
∧
r
∈
Atoms
K
→
¬
r
≤
˙
p
join
K
q
↔
p
join
K
q
C
p
join
K
q
join
K
r
55
42
53
45
54
syl3anc
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
p
≠
q
∧
X
=
p
join
K
q
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
∧
u
∈
Atoms
K
∧
Y
=
s
join
K
t
join
K
u
∧
r
∈
Atoms
K
∧
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
¬
r
≤
˙
p
join
K
q
↔
p
join
K
q
C
p
join
K
q
join
K
r
56
51
55
mpbird
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
p
≠
q
∧
X
=
p
join
K
q
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
∧
u
∈
Atoms
K
∧
Y
=
s
join
K
t
join
K
u
∧
r
∈
Atoms
K
∧
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
¬
r
≤
˙
p
join
K
q
57
simp12l
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
p
≠
q
∧
X
=
p
join
K
q
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
∧
u
∈
Atoms
K
∧
Y
=
s
join
K
t
join
K
u
∧
r
∈
Atoms
K
∧
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
p
≠
q
58
1
28
29
3at
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
r
∈
Atoms
K
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
∧
u
∈
Atoms
K
∧
¬
r
≤
˙
p
join
K
q
∧
p
≠
q
→
p
join
K
q
join
K
r
≤
˙
s
join
K
t
join
K
u
↔
p
join
K
q
join
K
r
=
s
join
K
t
join
K
u
59
42
46
50
56
57
58
syl32anc
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
p
≠
q
∧
X
=
p
join
K
q
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
∧
u
∈
Atoms
K
∧
Y
=
s
join
K
t
join
K
u
∧
r
∈
Atoms
K
∧
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
p
join
K
q
join
K
r
≤
˙
s
join
K
t
join
K
u
↔
p
join
K
q
join
K
r
=
s
join
K
t
join
K
u
60
41
59
mpbid
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
p
≠
q
∧
X
=
p
join
K
q
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
∧
u
∈
Atoms
K
∧
Y
=
s
join
K
t
join
K
u
∧
r
∈
Atoms
K
∧
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
p
join
K
q
join
K
r
=
s
join
K
t
join
K
u
61
60
39
40
3eqtr4d
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
p
≠
q
∧
X
=
p
join
K
q
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
∧
u
∈
Atoms
K
∧
Y
=
s
join
K
t
join
K
u
∧
r
∈
Atoms
K
∧
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
X
join
K
r
=
Y
62
36
61
breqtrd
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
p
≠
q
∧
X
=
p
join
K
q
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
∧
u
∈
Atoms
K
∧
Y
=
s
join
K
t
join
K
u
∧
r
∈
Atoms
K
∧
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
X
C
Y
63
62
3exp
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
p
≠
q
∧
X
=
p
join
K
q
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
→
u
∈
Atoms
K
∧
Y
=
s
join
K
t
join
K
u
∧
r
∈
Atoms
K
→
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
X
C
Y
64
63
3expd
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
∧
p
≠
q
∧
X
=
p
join
K
q
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
→
u
∈
Atoms
K
→
Y
=
s
join
K
t
join
K
u
→
r
∈
Atoms
K
→
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
X
C
Y
65
64
3exp
⊢
K
∈
HL
∧
p
∈
Atoms
K
∧
q
∈
Atoms
K
→
p
≠
q
∧
X
=
p
join
K
q
→
s
∈
Atoms
K
∧
t
∈
Atoms
K
→
u
∈
Atoms
K
→
Y
=
s
join
K
t
join
K
u
→
r
∈
Atoms
K
→
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
X
C
Y
66
65
3expib
⊢
K
∈
HL
→
p
∈
Atoms
K
∧
q
∈
Atoms
K
→
p
≠
q
∧
X
=
p
join
K
q
→
s
∈
Atoms
K
∧
t
∈
Atoms
K
→
u
∈
Atoms
K
→
Y
=
s
join
K
t
join
K
u
→
r
∈
Atoms
K
→
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
X
C
Y
67
66
rexlimdvv
⊢
K
∈
HL
→
∃
p
∈
Atoms
K
∃
q
∈
Atoms
K
p
≠
q
∧
X
=
p
join
K
q
→
s
∈
Atoms
K
∧
t
∈
Atoms
K
→
u
∈
Atoms
K
→
Y
=
s
join
K
t
join
K
u
→
r
∈
Atoms
K
→
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
X
C
Y
68
67
adantld
⊢
K
∈
HL
→
X
∈
Base
K
∧
∃
p
∈
Atoms
K
∃
q
∈
Atoms
K
p
≠
q
∧
X
=
p
join
K
q
→
s
∈
Atoms
K
∧
t
∈
Atoms
K
→
u
∈
Atoms
K
→
Y
=
s
join
K
t
join
K
u
→
r
∈
Atoms
K
→
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
X
C
Y
69
35
68
sylbid
⊢
K
∈
HL
→
X
∈
N
→
s
∈
Atoms
K
∧
t
∈
Atoms
K
→
u
∈
Atoms
K
→
Y
=
s
join
K
t
join
K
u
→
r
∈
Atoms
K
→
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
X
C
Y
70
69
imp31
⊢
K
∈
HL
∧
X
∈
N
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
→
u
∈
Atoms
K
→
Y
=
s
join
K
t
join
K
u
→
r
∈
Atoms
K
→
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
X
C
Y
71
34
70
syl7
⊢
K
∈
HL
∧
X
∈
N
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
→
u
∈
Atoms
K
→
s
≠
t
∧
¬
u
≤
˙
s
join
K
t
∧
Y
=
s
join
K
t
join
K
u
→
r
∈
Atoms
K
→
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
X
C
Y
72
71
rexlimdv
⊢
K
∈
HL
∧
X
∈
N
∧
s
∈
Atoms
K
∧
t
∈
Atoms
K
→
∃
u
∈
Atoms
K
s
≠
t
∧
¬
u
≤
˙
s
join
K
t
∧
Y
=
s
join
K
t
join
K
u
→
r
∈
Atoms
K
→
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
X
C
Y
73
72
rexlimdvva
⊢
K
∈
HL
∧
X
∈
N
→
∃
s
∈
Atoms
K
∃
t
∈
Atoms
K
∃
u
∈
Atoms
K
s
≠
t
∧
¬
u
≤
˙
s
join
K
t
∧
Y
=
s
join
K
t
join
K
u
→
r
∈
Atoms
K
→
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
X
C
Y
74
73
adantld
⊢
K
∈
HL
∧
X
∈
N
→
Y
∈
Base
K
∧
∃
s
∈
Atoms
K
∃
t
∈
Atoms
K
∃
u
∈
Atoms
K
s
≠
t
∧
¬
u
≤
˙
s
join
K
t
∧
Y
=
s
join
K
t
join
K
u
→
r
∈
Atoms
K
→
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
X
C
Y
75
33
74
sylbid
⊢
K
∈
HL
∧
X
∈
N
→
Y
∈
P
→
r
∈
Atoms
K
→
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
X
C
Y
76
75
3impia
⊢
K
∈
HL
∧
X
∈
N
∧
Y
∈
P
→
r
∈
Atoms
K
→
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
X
C
Y
77
76
rexlimdv
⊢
K
∈
HL
∧
X
∈
N
∧
Y
∈
P
→
∃
r
∈
Atoms
K
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
X
C
Y
78
77
imp
⊢
K
∈
HL
∧
X
∈
N
∧
Y
∈
P
∧
∃
r
∈
Atoms
K
X
C
X
join
K
r
∧
X
join
K
r
≤
˙
Y
→
X
C
Y
79
31
78
syldan
⊢
K
∈
HL
∧
X
∈
N
∧
Y
∈
P
∧
X
<
K
Y
→
X
C
Y
80
18
79
syldan
⊢
K
∈
HL
∧
X
∈
N
∧
Y
∈
P
∧
X
≤
˙
Y
→
X
C
Y