Metamath Proof Explorer


Theorem llyi

Description: The property of a locally A topological space. (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion llyi JLocally A UJ PU uJuUPuJ𝑡uA

Proof

Step Hyp Ref Expression
1 islly JLocally A JTopxJyxuJ𝒫xyuJ𝑡uA
2 1 simprbi JLocally A xJyxuJ𝒫xyuJ𝑡uA
3 pweq x=U𝒫x=𝒫U
4 3 ineq2d x=UJ𝒫x=J𝒫U
5 4 rexeqdv x=UuJ𝒫xyuJ𝑡uAuJ𝒫UyuJ𝑡uA
6 5 raleqbi1dv x=UyxuJ𝒫xyuJ𝑡uAyUuJ𝒫UyuJ𝑡uA
7 6 rspccva xJyxuJ𝒫xyuJ𝑡uAUJyUuJ𝒫UyuJ𝑡uA
8 2 7 sylan JLocally A UJ yUuJ𝒫UyuJ𝑡uA
9 eleq1 y=PyuPu
10 9 anbi1d y=PyuJ𝑡uAPuJ𝑡uA
11 10 anbi2d y=PuJ𝒫UyuJ𝑡uAuJ𝒫UPuJ𝑡uA
12 anass uJuUPuJ𝑡uAuJuUPuJ𝑡uA
13 elin uJ𝒫UuJu𝒫U
14 velpw u𝒫UuU
15 14 anbi2i uJu𝒫UuJuU
16 13 15 bitri uJ𝒫UuJuU
17 16 anbi1i uJ𝒫UPuJ𝑡uAuJuUPuJ𝑡uA
18 3anass uUPuJ𝑡uAuUPuJ𝑡uA
19 18 anbi2i uJuUPuJ𝑡uAuJuUPuJ𝑡uA
20 12 17 19 3bitr4i uJ𝒫UPuJ𝑡uAuJuUPuJ𝑡uA
21 11 20 bitrdi y=PuJ𝒫UyuJ𝑡uAuJuUPuJ𝑡uA
22 21 rexbidv2 y=PuJ𝒫UyuJ𝑡uAuJuUPuJ𝑡uA
23 22 rspccva yUuJ𝒫UyuJ𝑡uAPUuJuUPuJ𝑡uA
24 8 23 stoic3 JLocally A UJ PU uJuUPuJ𝑡uA