Description: An open subspace of a locally A space is also locally A . (Contributed by Mario Carneiro, 2-Mar-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | llyrest | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | llytop | |
|
2 | resttop | |
|
3 | 1 2 | sylan | |
4 | restopn2 | |
|
5 | 1 4 | sylan | |
6 | simp1l | |
|
7 | simp2l | |
|
8 | simp3 | |
|
9 | llyi | |
|
10 | 6 7 8 9 | syl3anc | |
11 | simprl | |
|
12 | simprr1 | |
|
13 | simpl2r | |
|
14 | 12 13 | sstrd | |
15 | 6 1 | syl | |
16 | 15 | adantr | |
17 | simpl1r | |
|
18 | restopn2 | |
|
19 | 16 17 18 | syl2anc | |
20 | 11 14 19 | mpbir2and | |
21 | velpw | |
|
22 | 12 21 | sylibr | |
23 | 20 22 | elind | |
24 | simprr2 | |
|
25 | restabs | |
|
26 | 16 14 17 25 | syl3anc | |
27 | simprr3 | |
|
28 | 26 27 | eqeltrd | |
29 | 23 24 28 | jca32 | |
30 | 29 | ex | |
31 | 30 | reximdv2 | |
32 | 10 31 | mpd | |
33 | 32 | 3expa | |
34 | 33 | ralrimiva | |
35 | 34 | ex | |
36 | 5 35 | sylbid | |
37 | 36 | ralrimiv | |
38 | islly | |
|
39 | 3 37 38 | sylanbrc | |