Metamath Proof Explorer


Theorem llyrest

Description: An open subspace of a locally A space is also locally A . (Contributed by Mario Carneiro, 2-Mar-2015)

Ref Expression
Assertion llyrest JLocally A BJ J𝑡BLocally A

Proof

Step Hyp Ref Expression
1 llytop JLocally A JTop
2 resttop JTopBJJ𝑡BTop
3 1 2 sylan JLocally A BJ J𝑡BTop
4 restopn2 JTopBJxJ𝑡BxJxB
5 1 4 sylan JLocally A BJ xJ𝑡BxJxB
6 simp1l JLocally A BJ xJxB yx JLocally A
7 simp2l JLocally A BJ xJxB yx xJ
8 simp3 JLocally A BJ xJxB yx yx
9 llyi JLocally A xJ yx vJvxyvJ𝑡vA
10 6 7 8 9 syl3anc JLocally A BJ xJxB yx vJvxyvJ𝑡vA
11 simprl JLocally A BJ xJxB yx vJvxyvJ𝑡vA vJ
12 simprr1 JLocally A BJ xJxB yx vJvxyvJ𝑡vA vx
13 simpl2r JLocally A BJ xJxB yx vJvxyvJ𝑡vA xB
14 12 13 sstrd JLocally A BJ xJxB yx vJvxyvJ𝑡vA vB
15 6 1 syl JLocally A BJ xJxB yx JTop
16 15 adantr JLocally A BJ xJxB yx vJvxyvJ𝑡vA JTop
17 simpl1r JLocally A BJ xJxB yx vJvxyvJ𝑡vA BJ
18 restopn2 JTopBJvJ𝑡BvJvB
19 16 17 18 syl2anc JLocally A BJ xJxB yx vJvxyvJ𝑡vA vJ𝑡BvJvB
20 11 14 19 mpbir2and JLocally A BJ xJxB yx vJvxyvJ𝑡vA vJ𝑡B
21 velpw v𝒫xvx
22 12 21 sylibr JLocally A BJ xJxB yx vJvxyvJ𝑡vA v𝒫x
23 20 22 elind JLocally A BJ xJxB yx vJvxyvJ𝑡vA vJ𝑡B𝒫x
24 simprr2 JLocally A BJ xJxB yx vJvxyvJ𝑡vA yv
25 restabs JTopvBBJJ𝑡B𝑡v=J𝑡v
26 16 14 17 25 syl3anc JLocally A BJ xJxB yx vJvxyvJ𝑡vA J𝑡B𝑡v=J𝑡v
27 simprr3 JLocally A BJ xJxB yx vJvxyvJ𝑡vA J𝑡vA
28 26 27 eqeltrd JLocally A BJ xJxB yx vJvxyvJ𝑡vA J𝑡B𝑡vA
29 23 24 28 jca32 JLocally A BJ xJxB yx vJvxyvJ𝑡vA vJ𝑡B𝒫xyvJ𝑡B𝑡vA
30 29 ex JLocally A BJ xJxB yx vJvxyvJ𝑡vAvJ𝑡B𝒫xyvJ𝑡B𝑡vA
31 30 reximdv2 JLocally A BJ xJxB yx vJvxyvJ𝑡vAvJ𝑡B𝒫xyvJ𝑡B𝑡vA
32 10 31 mpd JLocally A BJ xJxB yx vJ𝑡B𝒫xyvJ𝑡B𝑡vA
33 32 3expa JLocally A BJ xJxB yx vJ𝑡B𝒫xyvJ𝑡B𝑡vA
34 33 ralrimiva JLocally A BJ xJxB yxvJ𝑡B𝒫xyvJ𝑡B𝑡vA
35 34 ex JLocally A BJ xJxByxvJ𝑡B𝒫xyvJ𝑡B𝑡vA
36 5 35 sylbid JLocally A BJ xJ𝑡ByxvJ𝑡B𝒫xyvJ𝑡B𝑡vA
37 36 ralrimiv JLocally A BJ xJ𝑡ByxvJ𝑡B𝒫xyvJ𝑡B𝑡vA
38 islly J𝑡BLocally A J𝑡BTopxJ𝑡ByxvJ𝑡B𝒫xyvJ𝑡B𝑡vA
39 3 37 38 sylanbrc JLocally A BJ J𝑡BLocally A