Metamath Proof Explorer


Theorem lmlimxrge0

Description: Relate a limit in the nonnegative extended reals to a complex limit, provided the considered function is a real function. (Contributed by Thierry Arnoux, 11-Jul-2017)

Ref Expression
Hypotheses lmlimxrge0.j J = TopOpen 𝑠 * 𝑠 0 +∞
lmlimxrge0.f φ F : X
lmlimxrge0.p φ P X
lmlimxrge0.x X 0 +∞
Assertion lmlimxrge0 φ F t J P F P

Proof

Step Hyp Ref Expression
1 lmlimxrge0.j J = TopOpen 𝑠 * 𝑠 0 +∞
2 lmlimxrge0.f φ F : X
3 lmlimxrge0.p φ P X
4 lmlimxrge0.x X 0 +∞
5 xrge0topn TopOpen 𝑠 * 𝑠 0 +∞ = ordTop 𝑡 0 +∞
6 1 5 eqtri J = ordTop 𝑡 0 +∞
7 letopon ordTop TopOn *
8 iccssxr 0 +∞ *
9 resttopon ordTop TopOn * 0 +∞ * ordTop 𝑡 0 +∞ TopOn 0 +∞
10 7 8 9 mp2an ordTop 𝑡 0 +∞ TopOn 0 +∞
11 6 10 eqeltri J TopOn 0 +∞
12 fvex ordTop V
13 icossicc 0 +∞ 0 +∞
14 4 13 sstri X 0 +∞
15 ovex 0 +∞ V
16 restabs ordTop V X 0 +∞ 0 +∞ V ordTop 𝑡 0 +∞ 𝑡 X = ordTop 𝑡 X
17 12 14 15 16 mp3an ordTop 𝑡 0 +∞ 𝑡 X = ordTop 𝑡 X
18 6 oveq1i J 𝑡 X = ordTop 𝑡 0 +∞ 𝑡 X
19 rge0ssre 0 +∞
20 4 19 sstri X
21 eqid TopOpen fld = TopOpen fld
22 eqid ordTop = ordTop
23 21 22 xrrest2 X TopOpen fld 𝑡 X = ordTop 𝑡 X
24 20 23 ax-mp TopOpen fld 𝑡 X = ordTop 𝑡 X
25 17 18 24 3eqtr4i J 𝑡 X = TopOpen fld 𝑡 X
26 ax-resscn
27 20 26 sstri X
28 11 2 3 25 27 lmlim φ F t J P F P