| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lmmo.1 |  | 
						
							| 2 |  | lmmo.4 |  | 
						
							| 3 |  | lmmo.5 |  | 
						
							| 4 |  | an4 |  | 
						
							| 5 |  | nnuz |  | 
						
							| 6 |  | simprr |  | 
						
							| 7 |  | 1zzd |  | 
						
							| 8 | 2 | adantr |  | 
						
							| 9 |  | simprl |  | 
						
							| 10 | 5 6 7 8 9 | lmcvg |  | 
						
							| 11 | 10 | ex |  | 
						
							| 12 |  | simprr |  | 
						
							| 13 |  | 1zzd |  | 
						
							| 14 | 3 | adantr |  | 
						
							| 15 |  | simprl |  | 
						
							| 16 | 5 12 13 14 15 | lmcvg |  | 
						
							| 17 | 16 | ex |  | 
						
							| 18 | 11 17 | anim12d |  | 
						
							| 19 | 5 | rexanuz2 |  | 
						
							| 20 |  | nnz |  | 
						
							| 21 |  | uzid |  | 
						
							| 22 |  | ne0i |  | 
						
							| 23 | 20 21 22 | 3syl |  | 
						
							| 24 |  | r19.2z |  | 
						
							| 25 |  | elin |  | 
						
							| 26 |  | n0i |  | 
						
							| 27 | 25 26 | sylbir |  | 
						
							| 28 | 27 | rexlimivw |  | 
						
							| 29 | 24 28 | syl |  | 
						
							| 30 | 23 29 | sylan |  | 
						
							| 31 | 30 | rexlimiva |  | 
						
							| 32 | 19 31 | sylbir |  | 
						
							| 33 | 18 32 | syl6 |  | 
						
							| 34 | 4 33 | biimtrid |  | 
						
							| 35 | 34 | expdimp |  | 
						
							| 36 |  | imnan |  | 
						
							| 37 | 35 36 | sylib |  | 
						
							| 38 |  | df-3an |  | 
						
							| 39 | 37 38 | sylnibr |  | 
						
							| 40 | 39 | anassrs |  | 
						
							| 41 | 40 | nrexdv |  | 
						
							| 42 | 41 | nrexdv |  | 
						
							| 43 |  | haustop |  | 
						
							| 44 | 1 43 | syl |  | 
						
							| 45 |  | toptopon2 |  | 
						
							| 46 | 44 45 | sylib |  | 
						
							| 47 |  | lmcl |  | 
						
							| 48 | 46 2 47 | syl2anc |  | 
						
							| 49 |  | lmcl |  | 
						
							| 50 | 46 3 49 | syl2anc |  | 
						
							| 51 |  | eqid |  | 
						
							| 52 | 51 | hausnei |  | 
						
							| 53 | 52 | 3exp2 |  | 
						
							| 54 | 1 48 50 53 | syl3c |  | 
						
							| 55 | 54 | necon1bd |  | 
						
							| 56 | 42 55 | mpd |  |