Metamath Proof Explorer


Theorem lmod0rng

Description: If the scalar ring of a module is the zero ring, the module is the zero module, i.e. the base set of the module is the singleton consisting of the identity element only. (Contributed by AV, 17-Apr-2019)

Ref Expression
Assertion lmod0rng MLMod¬ScalarMNzRingBaseM=0M

Proof

Step Hyp Ref Expression
1 eqid ScalarM=ScalarM
2 1 lmodring MLModScalarMRing
3 0ringnnzr ScalarMRingBaseScalarM=1¬ScalarMNzRing
4 eqid BaseScalarM=BaseScalarM
5 eqid 0ScalarM=0ScalarM
6 eqid 1ScalarM=1ScalarM
7 4 5 6 0ring01eq ScalarMRingBaseScalarM=10ScalarM=1ScalarM
8 eqid BaseM=BaseM
9 eqid M=M
10 8 1 9 6 lmodvs1 MLModvBaseM1ScalarMMv=v
11 eqcom 1ScalarMMv=vv=1ScalarMMv
12 11 biimpi 1ScalarMMv=vv=1ScalarMMv
13 oveq1 1ScalarM=0ScalarM1ScalarMMv=0ScalarMMv
14 13 eqcoms 0ScalarM=1ScalarM1ScalarMMv=0ScalarMMv
15 eqid 0M=0M
16 8 1 9 5 15 lmod0vs MLModvBaseM0ScalarMMv=0M
17 14 16 sylan9eqr MLModvBaseM0ScalarM=1ScalarM1ScalarMMv=0M
18 12 17 sylan9eq 1ScalarMMv=vMLModvBaseM0ScalarM=1ScalarMv=0M
19 18 exp32 1ScalarMMv=vMLModvBaseM0ScalarM=1ScalarMv=0M
20 10 19 mpcom MLModvBaseM0ScalarM=1ScalarMv=0M
21 20 com12 0ScalarM=1ScalarMMLModvBaseMv=0M
22 21 impl 0ScalarM=1ScalarMMLModvBaseMv=0M
23 22 ralrimiva 0ScalarM=1ScalarMMLModvBaseMv=0M
24 8 lmodbn0 MLModBaseM
25 eqsn BaseMBaseM=0MvBaseMv=0M
26 24 25 syl MLModBaseM=0MvBaseMv=0M
27 26 adantl 0ScalarM=1ScalarMMLModBaseM=0MvBaseMv=0M
28 23 27 mpbird 0ScalarM=1ScalarMMLModBaseM=0M
29 28 ex 0ScalarM=1ScalarMMLModBaseM=0M
30 7 29 syl ScalarMRingBaseScalarM=1MLModBaseM=0M
31 30 ex ScalarMRingBaseScalarM=1MLModBaseM=0M
32 3 31 sylbird ScalarMRing¬ScalarMNzRingMLModBaseM=0M
33 32 com23 ScalarMRingMLMod¬ScalarMNzRingBaseM=0M
34 2 33 mpcom MLMod¬ScalarMNzRingBaseM=0M
35 34 imp MLMod¬ScalarMNzRingBaseM=0M