Metamath Proof Explorer


Theorem lmod0rng

Description: If the scalar ring of a module is the zero ring, the module is the zero module, i.e. the base set of the module is the singleton consisting of the identity element only. (Contributed by AV, 17-Apr-2019)

Ref Expression
Assertion lmod0rng M LMod ¬ Scalar M NzRing Base M = 0 M

Proof

Step Hyp Ref Expression
1 eqid Scalar M = Scalar M
2 1 lmodring M LMod Scalar M Ring
3 0ringnnzr Scalar M Ring Base Scalar M = 1 ¬ Scalar M NzRing
4 eqid Base Scalar M = Base Scalar M
5 eqid 0 Scalar M = 0 Scalar M
6 eqid 1 Scalar M = 1 Scalar M
7 4 5 6 0ring01eq Scalar M Ring Base Scalar M = 1 0 Scalar M = 1 Scalar M
8 eqid Base M = Base M
9 eqid M = M
10 8 1 9 6 lmodvs1 M LMod v Base M 1 Scalar M M v = v
11 eqcom 1 Scalar M M v = v v = 1 Scalar M M v
12 11 biimpi 1 Scalar M M v = v v = 1 Scalar M M v
13 oveq1 1 Scalar M = 0 Scalar M 1 Scalar M M v = 0 Scalar M M v
14 13 eqcoms 0 Scalar M = 1 Scalar M 1 Scalar M M v = 0 Scalar M M v
15 eqid 0 M = 0 M
16 8 1 9 5 15 lmod0vs M LMod v Base M 0 Scalar M M v = 0 M
17 14 16 sylan9eqr M LMod v Base M 0 Scalar M = 1 Scalar M 1 Scalar M M v = 0 M
18 12 17 sylan9eq 1 Scalar M M v = v M LMod v Base M 0 Scalar M = 1 Scalar M v = 0 M
19 18 exp32 1 Scalar M M v = v M LMod v Base M 0 Scalar M = 1 Scalar M v = 0 M
20 10 19 mpcom M LMod v Base M 0 Scalar M = 1 Scalar M v = 0 M
21 20 com12 0 Scalar M = 1 Scalar M M LMod v Base M v = 0 M
22 21 impl 0 Scalar M = 1 Scalar M M LMod v Base M v = 0 M
23 22 ralrimiva 0 Scalar M = 1 Scalar M M LMod v Base M v = 0 M
24 8 lmodbn0 M LMod Base M
25 eqsn Base M Base M = 0 M v Base M v = 0 M
26 24 25 syl M LMod Base M = 0 M v Base M v = 0 M
27 26 adantl 0 Scalar M = 1 Scalar M M LMod Base M = 0 M v Base M v = 0 M
28 23 27 mpbird 0 Scalar M = 1 Scalar M M LMod Base M = 0 M
29 28 ex 0 Scalar M = 1 Scalar M M LMod Base M = 0 M
30 7 29 syl Scalar M Ring Base Scalar M = 1 M LMod Base M = 0 M
31 30 ex Scalar M Ring Base Scalar M = 1 M LMod Base M = 0 M
32 3 31 sylbird Scalar M Ring ¬ Scalar M NzRing M LMod Base M = 0 M
33 32 com23 Scalar M Ring M LMod ¬ Scalar M NzRing Base M = 0 M
34 2 33 mpcom M LMod ¬ Scalar M NzRing Base M = 0 M
35 34 imp M LMod ¬ Scalar M NzRing Base M = 0 M