Description: If the scalar ring of a module is the zero ring, the module is the zero module, i.e. the base set of the module is the singleton consisting of the identity element only. (Contributed by AV, 17-Apr-2019)
Ref | Expression | ||
---|---|---|---|
Assertion | lmod0rng | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid | |
|
2 | 1 | lmodring | |
3 | 0ringnnzr | |
|
4 | eqid | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | 4 5 6 | 0ring01eq | |
8 | eqid | |
|
9 | eqid | |
|
10 | 8 1 9 6 | lmodvs1 | |
11 | eqcom | |
|
12 | 11 | biimpi | |
13 | oveq1 | |
|
14 | 13 | eqcoms | |
15 | eqid | |
|
16 | 8 1 9 5 15 | lmod0vs | |
17 | 14 16 | sylan9eqr | |
18 | 12 17 | sylan9eq | |
19 | 18 | exp32 | |
20 | 10 19 | mpcom | |
21 | 20 | com12 | |
22 | 21 | impl | |
23 | 22 | ralrimiva | |
24 | 8 | lmodbn0 | |
25 | eqsn | |
|
26 | 24 25 | syl | |
27 | 26 | adantl | |
28 | 23 27 | mpbird | |
29 | 28 | ex | |
30 | 7 29 | syl | |
31 | 30 | ex | |
32 | 3 31 | sylbird | |
33 | 32 | com23 | |
34 | 2 33 | mpcom | |
35 | 34 | imp | |