Metamath Proof Explorer


Theorem lmod1lem3

Description: Lemma 3 for lmod1 . (Contributed by AV, 29-Apr-2019)

Ref Expression
Hypothesis lmod1.m M=BasendxI+ndxIIIScalarndxRndxxBaseR,yIy
Assertion lmod1lem3 IVRRingqBaseRrBaseRq+ScalarMrMI=qMI+MrMI

Proof

Step Hyp Ref Expression
1 lmod1.m M=BasendxI+ndxIIIScalarndxRndxxBaseR,yIy
2 eqidd IVRRingqBaseRrBaseRxBaseR,yIy=xBaseR,yIy
3 simprr IVRRingqBaseRrBaseRx=q+ScalarMry=Iy=I
4 simplr IVRRingqBaseRrBaseRRRing
5 1 lmodsca RRingR=ScalarM
6 5 fveq2d RRing+R=+ScalarM
7 4 6 syl IVRRingqBaseRrBaseR+R=+ScalarM
8 7 eqcomd IVRRingqBaseRrBaseR+ScalarM=+R
9 8 oveqd IVRRingqBaseRrBaseRq+ScalarMr=q+Rr
10 simprl IVRRingqBaseRrBaseRqBaseR
11 simprr IVRRingqBaseRrBaseRrBaseR
12 eqid BaseR=BaseR
13 eqid +R=+R
14 12 13 ringacl RRingqBaseRrBaseRq+RrBaseR
15 4 10 11 14 syl3anc IVRRingqBaseRrBaseRq+RrBaseR
16 9 15 eqeltrd IVRRingqBaseRrBaseRq+ScalarMrBaseR
17 snidg IVII
18 17 adantr IVRRingII
19 18 adantr IVRRingqBaseRrBaseRII
20 simpl IVRRingIV
21 20 adantr IVRRingqBaseRrBaseRIV
22 2 3 16 19 21 ovmpod IVRRingqBaseRrBaseRq+ScalarMrxBaseR,yIyI=I
23 fvex BaseRV
24 snex IV
25 23 24 pm3.2i BaseRVIV
26 mpoexga BaseRVIVxBaseR,yIyV
27 25 26 mp1i IVRRingqBaseRrBaseRxBaseR,yIyV
28 1 lmodvsca xBaseR,yIyVxBaseR,yIy=M
29 27 28 syl IVRRingqBaseRrBaseRxBaseR,yIy=M
30 29 eqcomd IVRRingqBaseRrBaseRM=xBaseR,yIy
31 30 oveqd IVRRingqBaseRrBaseRq+ScalarMrMI=q+ScalarMrxBaseR,yIyI
32 simprr IVRRingqBaseRrBaseRx=qy=Iy=I
33 30 32 10 19 19 ovmpod IVRRingqBaseRrBaseRqMI=I
34 simprr IVRRingqBaseRrBaseRx=ry=Iy=I
35 30 34 11 19 19 ovmpod IVRRingqBaseRrBaseRrMI=I
36 33 35 oveq12d IVRRingqBaseRrBaseRqMI+MrMI=I+MI
37 snex IIIV
38 1 lmodplusg IIIVIII=+M
39 37 38 mp1i IVRRingqBaseRrBaseRIII=+M
40 39 eqcomd IVRRingqBaseRrBaseR+M=III
41 40 oveqd IVRRingqBaseRrBaseRI+MI=IIIII
42 df-ov IIIII=IIIII
43 opex IIV
44 20 43 jctil IVRRingIIVIV
45 44 adantr IVRRingqBaseRrBaseRIIVIV
46 fvsng IIVIVIIIII=I
47 45 46 syl IVRRingqBaseRrBaseRIIIII=I
48 42 47 eqtrid IVRRingqBaseRrBaseRIIIII=I
49 36 41 48 3eqtrd IVRRingqBaseRrBaseRqMI+MrMI=I
50 22 31 49 3eqtr4d IVRRingqBaseRrBaseRq+ScalarMrMI=qMI+MrMI