Metamath Proof Explorer


Theorem lmod1zr

Description: The (smallest) structure representing azero module over a zero ring. (Contributed by AV, 29-Apr-2019)

Ref Expression
Hypotheses lmod1zr.r R = Base ndx Z + ndx Z Z Z ndx Z Z Z
lmod1zr.m M = Base ndx I + ndx I I I Scalar ndx R ndx Z I I
Assertion lmod1zr I V Z W M LMod

Proof

Step Hyp Ref Expression
1 lmod1zr.r R = Base ndx Z + ndx Z Z Z ndx Z Z Z
2 lmod1zr.m M = Base ndx I + ndx I I I Scalar ndx R ndx Z I I
3 elsni p Z I p = Z I
4 fveq2 p = Z I 2 nd p = 2 nd Z I
5 4 adantl I V Z W p = Z I 2 nd p = 2 nd Z I
6 op2ndg Z W I V 2 nd Z I = I
7 6 ancoms I V Z W 2 nd Z I = I
8 snidg I V I I
9 8 adantr I V Z W I I
10 7 9 eqeltrd I V Z W 2 nd Z I I
11 10 adantr I V Z W p = Z I 2 nd Z I I
12 5 11 eqeltrd I V Z W p = Z I 2 nd p I
13 3 12 sylan2 I V Z W p Z I 2 nd p I
14 13 fmpttd I V Z W p Z I 2 nd p : Z I I
15 opex Z I V
16 simpl I V Z W I V
17 fsng Z I V I V p Z I 2 nd p : Z I I p Z I 2 nd p = Z I I
18 15 16 17 sylancr I V Z W p Z I 2 nd p : Z I I p Z I 2 nd p = Z I I
19 14 18 mpbid I V Z W p Z I 2 nd p = Z I I
20 xpsng Z W I V Z × I = Z I
21 20 ancoms I V Z W Z × I = Z I
22 21 eqcomd I V Z W Z I = Z × I
23 22 mpteq1d I V Z W p Z I 2 nd p = p Z × I 2 nd p
24 19 23 eqtr3d I V Z W Z I I = p Z × I 2 nd p
25 vex z V
26 vex i V
27 25 26 op2ndd p = z i 2 nd p = i
28 27 mpompt p Z × I 2 nd p = z Z , i I i
29 28 a1i I V Z W p Z × I 2 nd p = z Z , i I i
30 snex Z V
31 1 rngbase Z V Z = Base R
32 30 31 mp1i I V Z W Z = Base R
33 eqidd I V Z W I = I
34 mpoeq12 Z = Base R I = I z Z , i I i = z Base R , i I i
35 32 33 34 syl2anc I V Z W z Z , i I i = z Base R , i I i
36 24 29 35 3eqtrd I V Z W Z I I = z Base R , i I i
37 36 opeq2d I V Z W ndx Z I I = ndx z Base R , i I i
38 37 sneqd I V Z W ndx Z I I = ndx z Base R , i I i
39 38 uneq2d I V Z W Base ndx I + ndx I I I Scalar ndx R ndx Z I I = Base ndx I + ndx I I I Scalar ndx R ndx z Base R , i I i
40 2 39 eqtrid I V Z W M = Base ndx I + ndx I I I Scalar ndx R ndx z Base R , i I i
41 1 ring1 Z W R Ring
42 eqidd z = a i = i
43 id i = b i = b
44 42 43 cbvmpov z Base R , i I i = a Base R , b I b
45 44 opeq2i ndx z Base R , i I i = ndx a Base R , b I b
46 45 sneqi ndx z Base R , i I i = ndx a Base R , b I b
47 46 uneq2i Base ndx I + ndx I I I Scalar ndx R ndx z Base R , i I i = Base ndx I + ndx I I I Scalar ndx R ndx a Base R , b I b
48 47 lmod1 I V R Ring Base ndx I + ndx I I I Scalar ndx R ndx z Base R , i I i LMod
49 41 48 sylan2 I V Z W Base ndx I + ndx I I I Scalar ndx R ndx z Base R , i I i LMod
50 40 49 eqeltrd I V Z W M LMod