Metamath Proof Explorer


Theorem lmodvsinv

Description: Multiplication of a vector by a negated scalar. (Contributed by Stefan O'Rear, 28-Feb-2015)

Ref Expression
Hypotheses lmodvsinv.b B = Base W
lmodvsinv.f F = Scalar W
lmodvsinv.s · ˙ = W
lmodvsinv.n N = inv g W
lmodvsinv.m M = inv g F
lmodvsinv.k K = Base F
Assertion lmodvsinv W LMod R K X B M R · ˙ X = N R · ˙ X

Proof

Step Hyp Ref Expression
1 lmodvsinv.b B = Base W
2 lmodvsinv.f F = Scalar W
3 lmodvsinv.s · ˙ = W
4 lmodvsinv.n N = inv g W
5 lmodvsinv.m M = inv g F
6 lmodvsinv.k K = Base F
7 simp1 W LMod R K X B W LMod
8 2 lmodring W LMod F Ring
9 8 3ad2ant1 W LMod R K X B F Ring
10 ringgrp F Ring F Grp
11 9 10 syl W LMod R K X B F Grp
12 eqid 1 F = 1 F
13 6 12 ringidcl F Ring 1 F K
14 9 13 syl W LMod R K X B 1 F K
15 6 5 grpinvcl F Grp 1 F K M 1 F K
16 11 14 15 syl2anc W LMod R K X B M 1 F K
17 simp2 W LMod R K X B R K
18 simp3 W LMod R K X B X B
19 eqid F = F
20 1 2 3 6 19 lmodvsass W LMod M 1 F K R K X B M 1 F F R · ˙ X = M 1 F · ˙ R · ˙ X
21 7 16 17 18 20 syl13anc W LMod R K X B M 1 F F R · ˙ X = M 1 F · ˙ R · ˙ X
22 6 19 12 5 9 17 ringnegl W LMod R K X B M 1 F F R = M R
23 22 oveq1d W LMod R K X B M 1 F F R · ˙ X = M R · ˙ X
24 1 2 3 6 lmodvscl W LMod R K X B R · ˙ X B
25 1 4 2 3 12 5 lmodvneg1 W LMod R · ˙ X B M 1 F · ˙ R · ˙ X = N R · ˙ X
26 7 24 25 syl2anc W LMod R K X B M 1 F · ˙ R · ˙ X = N R · ˙ X
27 21 23 26 3eqtr3d W LMod R K X B M R · ˙ X = N R · ˙ X