Step |
Hyp |
Ref |
Expression |
1 |
|
lpadlen.1 |
|
2 |
|
lpadlen.2 |
|
3 |
|
lpadlen.3 |
|
4 |
|
lpadright.1 |
|
5 |
|
lpadright.2 |
|
6 |
1 2 3
|
lpadval |
|
7 |
6
|
fveq1d |
|
8 |
|
eqeq2 |
|
9 |
|
eqeq2 |
|
10 |
1
|
adantr |
|
11 |
2
|
adantr |
|
12 |
3
|
adantr |
|
13 |
|
simpr |
|
14 |
10 11 12 13
|
lpadlem3 |
|
15 |
14
|
fveq2d |
|
16 |
|
hash0 |
|
17 |
15 16
|
eqtrdi |
|
18 |
1
|
adantr |
|
19 |
2
|
adantr |
|
20 |
3
|
adantr |
|
21 |
|
lencl |
|
22 |
2 21
|
syl |
|
23 |
22
|
nn0red |
|
24 |
23
|
adantr |
|
25 |
1
|
nn0red |
|
26 |
25
|
adantr |
|
27 |
23 25
|
ltnled |
|
28 |
27
|
biimpar |
|
29 |
24 26 28
|
ltled |
|
30 |
18 19 20 29
|
lpadlem2 |
|
31 |
8 9 17 30
|
ifbothda |
|
32 |
31 4
|
eqtr4d |
|
33 |
32
|
oveq2d |
|
34 |
33
|
fveq2d |
|
35 |
3
|
lpadlem1 |
|
36 |
|
ccatval3 |
|
37 |
35 2 5 36
|
syl3anc |
|
38 |
7 34 37
|
3eqtr2d |
|