Metamath Proof Explorer


Theorem lpirlnr

Description: Left principal ideal rings are left Noetherian. (Contributed by Stefan O'Rear, 24-Jan-2015)

Ref Expression
Assertion lpirlnr RLPIRRLNoeR

Proof

Step Hyp Ref Expression
1 lpirring RLPIRRRing
2 eqid LPIdealR=LPIdealR
3 eqid RSpanR=RSpanR
4 eqid BaseR=BaseR
5 2 3 4 islpidl RRingaLPIdealRcBaseRa=RSpanRc
6 1 5 syl RLPIRaLPIdealRcBaseRa=RSpanRc
7 6 biimpa RLPIRaLPIdealRcBaseRa=RSpanRc
8 snelpwi cBaseRc𝒫BaseR
9 8 adantl RLPIRaLPIdealRcBaseRc𝒫BaseR
10 snfi cFin
11 10 a1i RLPIRaLPIdealRcBaseRcFin
12 9 11 elind RLPIRaLPIdealRcBaseRc𝒫BaseRFin
13 eqid RSpanRc=RSpanRc
14 fveq2 b=cRSpanRb=RSpanRc
15 14 rspceeqv c𝒫BaseRFinRSpanRc=RSpanRcb𝒫BaseRFinRSpanRc=RSpanRb
16 12 13 15 sylancl RLPIRaLPIdealRcBaseRb𝒫BaseRFinRSpanRc=RSpanRb
17 eqeq1 a=RSpanRca=RSpanRbRSpanRc=RSpanRb
18 17 rexbidv a=RSpanRcb𝒫BaseRFina=RSpanRbb𝒫BaseRFinRSpanRc=RSpanRb
19 16 18 syl5ibrcom RLPIRaLPIdealRcBaseRa=RSpanRcb𝒫BaseRFina=RSpanRb
20 19 rexlimdva RLPIRaLPIdealRcBaseRa=RSpanRcb𝒫BaseRFina=RSpanRb
21 7 20 mpd RLPIRaLPIdealRb𝒫BaseRFina=RSpanRb
22 21 ralrimiva RLPIRaLPIdealRb𝒫BaseRFina=RSpanRb
23 eqid LIdealR=LIdealR
24 2 23 islpir RLPIRRRingLIdealR=LPIdealR
25 24 simprbi RLPIRLIdealR=LPIdealR
26 25 raleqdv RLPIRaLIdealRb𝒫BaseRFina=RSpanRbaLPIdealRb𝒫BaseRFina=RSpanRb
27 22 26 mpbird RLPIRaLIdealRb𝒫BaseRFina=RSpanRb
28 4 23 3 islnr2 RLNoeRRRingaLIdealRb𝒫BaseRFina=RSpanRb
29 1 27 28 sylanbrc RLPIRRLNoeR