Metamath Proof Explorer


Theorem lpolconN

Description: Contraposition property of a polarity. (Contributed by NM, 26-Nov-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lpolcon.v V=BaseW
lpolcon.p P=LPolW
lpolcon.w φWX
lpolcon.o φ˙P
lpolcon.x φXV
lpolcon.y φYV
lpolcon.c φXY
Assertion lpolconN φ˙Y˙X

Proof

Step Hyp Ref Expression
1 lpolcon.v V=BaseW
2 lpolcon.p P=LPolW
3 lpolcon.w φWX
4 lpolcon.o φ˙P
5 lpolcon.x φXV
6 lpolcon.y φYV
7 lpolcon.c φXY
8 eqid LSubSpW=LSubSpW
9 eqid 0W=0W
10 eqid LSAtomsW=LSAtomsW
11 eqid LSHypW=LSHypW
12 1 8 9 10 11 2 islpolN WX˙P˙:𝒫VLSubSpW˙V=0WxyxVyVxy˙y˙xxLSAtomsW˙xLSHypW˙˙x=x
13 3 12 syl φ˙P˙:𝒫VLSubSpW˙V=0WxyxVyVxy˙y˙xxLSAtomsW˙xLSHypW˙˙x=x
14 4 13 mpbid φ˙:𝒫VLSubSpW˙V=0WxyxVyVxy˙y˙xxLSAtomsW˙xLSHypW˙˙x=x
15 simpr2 ˙:𝒫VLSubSpW˙V=0WxyxVyVxy˙y˙xxLSAtomsW˙xLSHypW˙˙x=xxyxVyVxy˙y˙x
16 5 6 7 3jca φXVYVXY
17 1 fvexi VV
18 17 elpw2 X𝒫VXV
19 5 18 sylibr φX𝒫V
20 17 elpw2 Y𝒫VYV
21 6 20 sylibr φY𝒫V
22 sseq1 x=XxVXV
23 biidd x=XyVyV
24 sseq1 x=XxyXy
25 22 23 24 3anbi123d x=XxVyVxyXVyVXy
26 fveq2 x=X˙x=˙X
27 26 sseq2d x=X˙y˙x˙y˙X
28 25 27 imbi12d x=XxVyVxy˙y˙xXVyVXy˙y˙X
29 biidd y=YXVXV
30 sseq1 y=YyVYV
31 sseq2 y=YXyXY
32 29 30 31 3anbi123d y=YXVyVXyXVYVXY
33 fveq2 y=Y˙y=˙Y
34 33 sseq1d y=Y˙y˙X˙Y˙X
35 32 34 imbi12d y=YXVyVXy˙y˙XXVYVXY˙Y˙X
36 28 35 sylan9bb x=Xy=YxVyVxy˙y˙xXVYVXY˙Y˙X
37 36 spc2gv X𝒫VY𝒫VxyxVyVxy˙y˙xXVYVXY˙Y˙X
38 19 21 37 syl2anc φxyxVyVxy˙y˙xXVYVXY˙Y˙X
39 16 38 mpid φxyxVyVxy˙y˙x˙Y˙X
40 15 39 syl5 φ˙:𝒫VLSubSpW˙V=0WxyxVyVxy˙y˙xxLSAtomsW˙xLSHypW˙˙x=x˙Y˙X
41 14 40 mpd φ˙Y˙X