Metamath Proof Explorer


Theorem lptioo1cn

Description: The lower bound of an open interval is a limit point of the interval, wirth respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses lptioo1cn.1 J = TopOpen fld
lptioo1cn.2 φ B *
lptioo1cn.3 φ A
lptioo1cn.4 φ A < B
Assertion lptioo1cn φ A limPt J A B

Proof

Step Hyp Ref Expression
1 lptioo1cn.1 J = TopOpen fld
2 lptioo1cn.2 φ B *
3 lptioo1cn.3 φ A
4 lptioo1cn.4 φ A < B
5 eqid topGen ran . = topGen ran .
6 5 3 2 4 lptioo1 φ A limPt topGen ran . A B
7 eqid TopOpen fld = TopOpen fld
8 7 cnfldtop TopOpen fld Top
9 8 a1i φ TopOpen fld Top
10 ax-resscn
11 unicntop = TopOpen fld
12 10 11 sseqtri TopOpen fld
13 12 a1i φ TopOpen fld
14 ioossre A B
15 14 a1i φ A B
16 eqid TopOpen fld = TopOpen fld
17 7 tgioo2 topGen ran . = TopOpen fld 𝑡
18 16 17 restlp TopOpen fld Top TopOpen fld A B limPt topGen ran . A B = limPt TopOpen fld A B
19 9 13 15 18 syl3anc φ limPt topGen ran . A B = limPt TopOpen fld A B
20 6 19 eleqtrd φ A limPt TopOpen fld A B
21 elin A limPt TopOpen fld A B A limPt TopOpen fld A B A
22 20 21 sylib φ A limPt TopOpen fld A B A
23 22 simpld φ A limPt TopOpen fld A B
24 1 eqcomi TopOpen fld = J
25 24 fveq2i limPt TopOpen fld = limPt J
26 25 fveq1i limPt TopOpen fld A B = limPt J A B
27 23 26 eleqtrdi φ A limPt J A B