Metamath Proof Explorer


Theorem lptioo1cn

Description: The lower bound of an open interval is a limit point of the interval, wirth respect to the standard topology on complex numbers. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses lptioo1cn.1 J=TopOpenfld
lptioo1cn.2 φB*
lptioo1cn.3 φA
lptioo1cn.4 φA<B
Assertion lptioo1cn φAlimPtJAB

Proof

Step Hyp Ref Expression
1 lptioo1cn.1 J=TopOpenfld
2 lptioo1cn.2 φB*
3 lptioo1cn.3 φA
4 lptioo1cn.4 φA<B
5 eqid topGenran.=topGenran.
6 5 3 2 4 lptioo1 φAlimPttopGenran.AB
7 eqid TopOpenfld=TopOpenfld
8 7 cnfldtop TopOpenfldTop
9 8 a1i φTopOpenfldTop
10 ax-resscn
11 unicntop =TopOpenfld
12 10 11 sseqtri TopOpenfld
13 12 a1i φTopOpenfld
14 ioossre AB
15 14 a1i φAB
16 eqid TopOpenfld=TopOpenfld
17 7 tgioo2 topGenran.=TopOpenfld𝑡
18 16 17 restlp TopOpenfldTopTopOpenfldABlimPttopGenran.AB=limPtTopOpenfldAB
19 9 13 15 18 syl3anc φlimPttopGenran.AB=limPtTopOpenfldAB
20 6 19 eleqtrd φAlimPtTopOpenfldAB
21 elin AlimPtTopOpenfldABAlimPtTopOpenfldABA
22 20 21 sylib φAlimPtTopOpenfldABA
23 22 simpld φAlimPtTopOpenfldAB
24 1 eqcomi TopOpenfld=J
25 24 fveq2i limPtTopOpenfld=limPtJ
26 25 fveq1i limPtTopOpenfldAB=limPtJAB
27 23 26 eleqtrdi φAlimPtJAB