Metamath Proof Explorer


Theorem lsatcvat

Description: A nonzero subspace less than the sum of two atoms is an atom. ( atcvati analog.) (Contributed by NM, 10-Jan-2015)

Ref Expression
Hypotheses lsatcvat.o 0˙=0W
lsatcvat.s S=LSubSpW
lsatcvat.p ˙=LSSumW
lsatcvat.a A=LSAtomsW
lsatcvat.w φWLVec
lsatcvat.u φUS
lsatcvat.q φQA
lsatcvat.r φRA
lsatcvat.n φU0˙
lsatcvat.l φUQ˙R
Assertion lsatcvat φUA

Proof

Step Hyp Ref Expression
1 lsatcvat.o 0˙=0W
2 lsatcvat.s S=LSubSpW
3 lsatcvat.p ˙=LSSumW
4 lsatcvat.a A=LSAtomsW
5 lsatcvat.w φWLVec
6 lsatcvat.u φUS
7 lsatcvat.q φQA
8 lsatcvat.r φRA
9 lsatcvat.n φU0˙
10 lsatcvat.l φUQ˙R
11 5 adantr φ¬QUWLVec
12 6 adantr φ¬QUUS
13 7 adantr φ¬QUQA
14 8 adantr φ¬QURA
15 9 adantr φ¬QUU0˙
16 10 adantr φ¬QUUQ˙R
17 simpr φ¬QU¬QU
18 1 2 3 4 11 12 13 14 15 16 17 lsatcvatlem φ¬QUUA
19 5 adantr φ¬RUWLVec
20 6 adantr φ¬RUUS
21 8 adantr φ¬RURA
22 7 adantr φ¬RUQA
23 9 adantr φ¬RUU0˙
24 lveclmod WLVecWLMod
25 5 24 syl φWLMod
26 lmodabl WLModWAbel
27 25 26 syl φWAbel
28 2 lsssssubg WLModSSubGrpW
29 25 28 syl φSSubGrpW
30 2 4 25 7 lsatlssel φQS
31 29 30 sseldd φQSubGrpW
32 2 4 25 8 lsatlssel φRS
33 29 32 sseldd φRSubGrpW
34 3 lsmcom WAbelQSubGrpWRSubGrpWQ˙R=R˙Q
35 27 31 33 34 syl3anc φQ˙R=R˙Q
36 35 psseq2d φUQ˙RUR˙Q
37 10 36 mpbid φUR˙Q
38 37 adantr φ¬RUUR˙Q
39 simpr φ¬RU¬RU
40 1 2 3 4 19 20 21 22 23 38 39 lsatcvatlem φ¬RUUA
41 29 6 sseldd φUSubGrpW
42 3 lsmlub QSubGrpWRSubGrpWUSubGrpWQURUQ˙RU
43 31 33 41 42 syl3anc φQURUQ˙RU
44 ssnpss Q˙RU¬UQ˙R
45 43 44 syl6bi φQURU¬UQ˙R
46 45 con2d φUQ˙R¬QURU
47 ianor ¬QURU¬QU¬RU
48 46 47 imbitrdi φUQ˙R¬QU¬RU
49 10 48 mpd φ¬QU¬RU
50 18 40 49 mpjaodan φUA