Metamath Proof Explorer


Theorem lshpnel2N

Description: Condition that determines a hyperplane. (Contributed by NM, 3-Oct-2014) (New usage is discouraged.)

Ref Expression
Hypotheses lshpnel2.v V=BaseW
lshpnel2.s S=LSubSpW
lshpnel2.n N=LSpanW
lshpnel2.p ˙=LSSumW
lshpnel2.h H=LSHypW
lshpnel2.w φWLVec
lshpnel2.u φUS
lshpnel2.t φUV
lshpnel2.x φXV
lshpnel2.e φ¬XU
Assertion lshpnel2N φUHU˙NX=V

Proof

Step Hyp Ref Expression
1 lshpnel2.v V=BaseW
2 lshpnel2.s S=LSubSpW
3 lshpnel2.n N=LSpanW
4 lshpnel2.p ˙=LSSumW
5 lshpnel2.h H=LSHypW
6 lshpnel2.w φWLVec
7 lshpnel2.u φUS
8 lshpnel2.t φUV
9 lshpnel2.x φXV
10 lshpnel2.e φ¬XU
11 10 adantr φUH¬XU
12 6 adantr φUHWLVec
13 simpr φUHUH
14 9 adantr φUHXV
15 1 3 4 5 12 13 14 lshpnelb φUH¬XUU˙NX=V
16 11 15 mpbid φUHU˙NX=V
17 7 adantr φU˙NX=VUS
18 8 adantr φU˙NX=VUV
19 9 adantr φU˙NX=VXV
20 lveclmod WLVecWLMod
21 6 20 syl φWLMod
22 2 3 lspid WLModUSNU=U
23 21 7 22 syl2anc φNU=U
24 23 uneq1d φNUNX=UNX
25 24 fveq2d φNNUNX=NUNX
26 1 2 lssss USUV
27 7 26 syl φUV
28 9 snssd φXV
29 1 3 lspun WLModUVXVNUX=NNUNX
30 21 27 28 29 syl3anc φNUX=NNUNX
31 1 2 3 lspsncl WLModXVNXS
32 21 9 31 syl2anc φNXS
33 2 3 4 lsmsp WLModUSNXSU˙NX=NUNX
34 21 7 32 33 syl3anc φU˙NX=NUNX
35 25 30 34 3eqtr4rd φU˙NX=NUX
36 35 eqeq1d φU˙NX=VNUX=V
37 36 biimpa φU˙NX=VNUX=V
38 sneq v=Xv=X
39 38 uneq2d v=XUv=UX
40 39 fveqeq2d v=XNUv=VNUX=V
41 40 rspcev XVNUX=VvVNUv=V
42 19 37 41 syl2anc φU˙NX=VvVNUv=V
43 6 adantr φU˙NX=VWLVec
44 1 3 2 5 islshp WLVecUHUSUVvVNUv=V
45 43 44 syl φU˙NX=VUHUSUVvVNUv=V
46 17 18 42 45 mpbir3and φU˙NX=VUH
47 16 46 impbida φUHU˙NX=V