Description: Condition that determines a hyperplane. (Contributed by NM, 3-Oct-2014) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lshpnel2.v | |
|
lshpnel2.s | |
||
lshpnel2.n | |
||
lshpnel2.p | |
||
lshpnel2.h | |
||
lshpnel2.w | |
||
lshpnel2.u | |
||
lshpnel2.t | |
||
lshpnel2.x | |
||
lshpnel2.e | |
||
Assertion | lshpnel2N | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lshpnel2.v | |
|
2 | lshpnel2.s | |
|
3 | lshpnel2.n | |
|
4 | lshpnel2.p | |
|
5 | lshpnel2.h | |
|
6 | lshpnel2.w | |
|
7 | lshpnel2.u | |
|
8 | lshpnel2.t | |
|
9 | lshpnel2.x | |
|
10 | lshpnel2.e | |
|
11 | 10 | adantr | |
12 | 6 | adantr | |
13 | simpr | |
|
14 | 9 | adantr | |
15 | 1 3 4 5 12 13 14 | lshpnelb | |
16 | 11 15 | mpbid | |
17 | 7 | adantr | |
18 | 8 | adantr | |
19 | 9 | adantr | |
20 | lveclmod | |
|
21 | 6 20 | syl | |
22 | 2 3 | lspid | |
23 | 21 7 22 | syl2anc | |
24 | 23 | uneq1d | |
25 | 24 | fveq2d | |
26 | 1 2 | lssss | |
27 | 7 26 | syl | |
28 | 9 | snssd | |
29 | 1 3 | lspun | |
30 | 21 27 28 29 | syl3anc | |
31 | 1 2 3 | lspsncl | |
32 | 21 9 31 | syl2anc | |
33 | 2 3 4 | lsmsp | |
34 | 21 7 32 33 | syl3anc | |
35 | 25 30 34 | 3eqtr4rd | |
36 | 35 | eqeq1d | |
37 | 36 | biimpa | |
38 | sneq | |
|
39 | 38 | uneq2d | |
40 | 39 | fveqeq2d | |
41 | 40 | rspcev | |
42 | 19 37 41 | syl2anc | |
43 | 6 | adantr | |
44 | 1 3 2 5 | islshp | |
45 | 43 44 | syl | |
46 | 17 18 42 45 | mpbir3and | |
47 | 16 46 | impbida | |