Metamath Proof Explorer


Theorem lsmsnorb

Description: The sumset of a group with a single element is the element's orbit by the group action. See gaorb . (Contributed by Thierry Arnoux, 21-Jan-2024)

Ref Expression
Hypotheses lsmsnorb.1 B=BaseG
lsmsnorb.2 +˙=+G
lsmsnorb.3 ˙=LSSumG
lsmsnorb.4 ˙=xy|xyBgAg+˙x=y
lsmsnorb.5 φGMnd
lsmsnorb.6 φAB
lsmsnorb.7 φXB
Assertion lsmsnorb φA˙X=X˙

Proof

Step Hyp Ref Expression
1 lsmsnorb.1 B=BaseG
2 lsmsnorb.2 +˙=+G
3 lsmsnorb.3 ˙=LSSumG
4 lsmsnorb.4 ˙=xy|xyBgAg+˙x=y
5 lsmsnorb.5 φGMnd
6 lsmsnorb.6 φAB
7 lsmsnorb.7 φXB
8 7 snssd φXB
9 1 3 lsmssv GMndABXBA˙XB
10 5 6 8 9 syl3anc φA˙XB
11 10 sselda φkA˙XkB
12 df-ec X˙=˙X
13 imassrn ˙Xran˙
14 4 rneqi ran˙=ranxy|xyBgAg+˙x=y
15 rnopab ranxy|xyBgAg+˙x=y=y|xxyBgAg+˙x=y
16 vex xV
17 vex yV
18 16 17 prss xByBxyB
19 18 biimpri xyBxByB
20 19 simprd xyByB
21 20 adantr xyBgAg+˙x=yyB
22 21 exlimiv xxyBgAg+˙x=yyB
23 22 abssi y|xxyBgAg+˙x=yB
24 15 23 eqsstri ranxy|xyBgAg+˙x=yB
25 14 24 eqsstri ran˙B
26 13 25 sstri ˙XB
27 26 a1i φ˙XB
28 12 27 eqsstrid φX˙B
29 28 sselda φkX˙kB
30 4 gaorb X˙kXBkBhAh+˙X=k
31 7 anim1i φkBXBkB
32 31 biantrurd φkBhAh+˙X=kXBkBhAh+˙X=k
33 df-3an XBkBhAh+˙X=kXBkBhAh+˙X=k
34 32 33 bitr4di φkBhAh+˙X=kXBkBhAh+˙X=k
35 30 34 bitr4id φkBX˙khAh+˙X=k
36 vex kV
37 7 adantr φkBXB
38 elecg kVXBkX˙X˙k
39 36 37 38 sylancr φkBkX˙X˙k
40 5 adantr φkBGMnd
41 6 adantr φkBAB
42 1 2 3 40 41 37 elgrplsmsn φkBkA˙XhAk=h+˙X
43 eqcom k=h+˙Xh+˙X=k
44 43 rexbii hAk=h+˙XhAh+˙X=k
45 42 44 bitrdi φkBkA˙XhAh+˙X=k
46 35 39 45 3bitr4rd φkBkA˙XkX˙
47 11 29 46 eqrdav φA˙X=X˙