Description: The sumset of a group with a single element is the element's orbit by the group action. See gaorb . (Contributed by Thierry Arnoux, 21-Jan-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsmsnorb.1 | |
|
lsmsnorb.2 | |
||
lsmsnorb.3 | |
||
lsmsnorb.4 | |
||
lsmsnorb.5 | |
||
lsmsnorb.6 | |
||
lsmsnorb.7 | |
||
Assertion | lsmsnorb | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmsnorb.1 | |
|
2 | lsmsnorb.2 | |
|
3 | lsmsnorb.3 | |
|
4 | lsmsnorb.4 | |
|
5 | lsmsnorb.5 | |
|
6 | lsmsnorb.6 | |
|
7 | lsmsnorb.7 | |
|
8 | 7 | snssd | |
9 | 1 3 | lsmssv | |
10 | 5 6 8 9 | syl3anc | |
11 | 10 | sselda | |
12 | df-ec | |
|
13 | imassrn | |
|
14 | 4 | rneqi | |
15 | rnopab | |
|
16 | vex | |
|
17 | vex | |
|
18 | 16 17 | prss | |
19 | 18 | biimpri | |
20 | 19 | simprd | |
21 | 20 | adantr | |
22 | 21 | exlimiv | |
23 | 22 | abssi | |
24 | 15 23 | eqsstri | |
25 | 14 24 | eqsstri | |
26 | 13 25 | sstri | |
27 | 26 | a1i | |
28 | 12 27 | eqsstrid | |
29 | 28 | sselda | |
30 | 4 | gaorb | |
31 | 7 | anim1i | |
32 | 31 | biantrurd | |
33 | df-3an | |
|
34 | 32 33 | bitr4di | |
35 | 30 34 | bitr4id | |
36 | vex | |
|
37 | 7 | adantr | |
38 | elecg | |
|
39 | 36 37 38 | sylancr | |
40 | 5 | adantr | |
41 | 6 | adantr | |
42 | 1 2 3 40 41 37 | elgrplsmsn | |
43 | eqcom | |
|
44 | 43 | rexbii | |
45 | 42 44 | bitrdi | |
46 | 35 39 45 | 3bitr4rd | |
47 | 11 29 46 | eqrdav | |