Metamath Proof Explorer


Theorem lsppratlem4

Description: Lemma for lspprat . In the second case of lsppratlem1 , y e. ( N{ X , Y } ) C_ ( N{ x , Y } ) and y e/ ( N{ x } ) implies Y e. ( N{ x , y } ) and thus X e. ( N{ x , Y } ) C_ ( N{ x , y } ) as well. (Contributed by NM, 29-Aug-2014)

Ref Expression
Hypotheses lspprat.v V=BaseW
lspprat.s S=LSubSpW
lspprat.n N=LSpanW
lspprat.w φWLVec
lspprat.u φUS
lspprat.x φXV
lspprat.y φYV
lspprat.p φUNXY
lsppratlem1.o 0˙=0W
lsppratlem1.x2 φxU0˙
lsppratlem1.y2 φyUNx
lsppratlem4.x3 φXNxY
Assertion lsppratlem4 φXNxyYNxy

Proof

Step Hyp Ref Expression
1 lspprat.v V=BaseW
2 lspprat.s S=LSubSpW
3 lspprat.n N=LSpanW
4 lspprat.w φWLVec
5 lspprat.u φUS
6 lspprat.x φXV
7 lspprat.y φYV
8 lspprat.p φUNXY
9 lsppratlem1.o 0˙=0W
10 lsppratlem1.x2 φxU0˙
11 lsppratlem1.y2 φyUNx
12 lsppratlem4.x3 φXNxY
13 lveclmod WLVecWLMod
14 4 13 syl φWLMod
15 1 2 lssss USUV
16 5 15 syl φUV
17 16 ssdifssd φU0˙V
18 17 10 sseldd φxV
19 16 ssdifssd φUNxV
20 19 11 sseldd φyV
21 1 2 3 14 18 20 lspprcl φNxyS
22 df-pr xY=xY
23 snsspr1 xxy
24 18 20 prssd φxyV
25 1 3 lspssid WLModxyVxyNxy
26 14 24 25 syl2anc φxyNxy
27 23 26 sstrid φxNxy
28 18 snssd φxV
29 8 pssssd φUNXY
30 1 2 3 14 18 7 lspprcl φNxYS
31 df-pr XY=XY
32 12 snssd φXNxY
33 snsspr2 YxY
34 18 7 prssd φxYV
35 1 3 lspssid WLModxYVxYNxY
36 14 34 35 syl2anc φxYNxY
37 33 36 sstrid φYNxY
38 32 37 unssd φXYNxY
39 31 38 eqsstrid φXYNxY
40 2 3 lspssp WLModNxYSXYNxYNXYNxY
41 14 30 39 40 syl3anc φNXYNxY
42 29 41 sstrd φUNxY
43 22 fveq2i NxY=NxY
44 42 43 sseqtrdi φUNxY
45 44 ssdifd φUNxNxYNx
46 45 11 sseldd φyNxYNx
47 1 2 3 lspsolv WLVecxVYVyNxYNxYNxy
48 4 28 7 46 47 syl13anc φYNxy
49 df-pr xy=xy
50 49 fveq2i Nxy=Nxy
51 48 50 eleqtrrdi φYNxy
52 51 snssd φYNxy
53 27 52 unssd φxYNxy
54 22 53 eqsstrid φxYNxy
55 2 3 lspssp WLModNxySxYNxyNxYNxy
56 14 21 54 55 syl3anc φNxYNxy
57 56 12 sseldd φXNxy
58 57 51 jca φXNxyYNxy