Description: Lemma for lspprat . In the second case of lsppratlem1 , y e. ( N{ X , Y } ) C_ ( N{ x , Y } ) and y e/ ( N{ x } ) implies Y e. ( N{ x , y } ) and thus X e. ( N{ x , Y } ) C_ ( N{ x , y } ) as well. (Contributed by NM, 29-Aug-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lspprat.v | |
|
lspprat.s | |
||
lspprat.n | |
||
lspprat.w | |
||
lspprat.u | |
||
lspprat.x | |
||
lspprat.y | |
||
lspprat.p | |
||
lsppratlem1.o | |
||
lsppratlem1.x2 | |
||
lsppratlem1.y2 | |
||
lsppratlem4.x3 | |
||
Assertion | lsppratlem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspprat.v | |
|
2 | lspprat.s | |
|
3 | lspprat.n | |
|
4 | lspprat.w | |
|
5 | lspprat.u | |
|
6 | lspprat.x | |
|
7 | lspprat.y | |
|
8 | lspprat.p | |
|
9 | lsppratlem1.o | |
|
10 | lsppratlem1.x2 | |
|
11 | lsppratlem1.y2 | |
|
12 | lsppratlem4.x3 | |
|
13 | lveclmod | |
|
14 | 4 13 | syl | |
15 | 1 2 | lssss | |
16 | 5 15 | syl | |
17 | 16 | ssdifssd | |
18 | 17 10 | sseldd | |
19 | 16 | ssdifssd | |
20 | 19 11 | sseldd | |
21 | 1 2 3 14 18 20 | lspprcl | |
22 | df-pr | |
|
23 | snsspr1 | |
|
24 | 18 20 | prssd | |
25 | 1 3 | lspssid | |
26 | 14 24 25 | syl2anc | |
27 | 23 26 | sstrid | |
28 | 18 | snssd | |
29 | 8 | pssssd | |
30 | 1 2 3 14 18 7 | lspprcl | |
31 | df-pr | |
|
32 | 12 | snssd | |
33 | snsspr2 | |
|
34 | 18 7 | prssd | |
35 | 1 3 | lspssid | |
36 | 14 34 35 | syl2anc | |
37 | 33 36 | sstrid | |
38 | 32 37 | unssd | |
39 | 31 38 | eqsstrid | |
40 | 2 3 | lspssp | |
41 | 14 30 39 40 | syl3anc | |
42 | 29 41 | sstrd | |
43 | 22 | fveq2i | |
44 | 42 43 | sseqtrdi | |
45 | 44 | ssdifd | |
46 | 45 11 | sseldd | |
47 | 1 2 3 | lspsolv | |
48 | 4 28 7 46 47 | syl13anc | |
49 | df-pr | |
|
50 | 49 | fveq2i | |
51 | 48 50 | eleqtrrdi | |
52 | 51 | snssd | |
53 | 27 52 | unssd | |
54 | 22 53 | eqsstrid | |
55 | 2 3 | lspssp | |
56 | 14 21 54 55 | syl3anc | |
57 | 56 12 | sseldd | |
58 | 57 51 | jca | |