Metamath Proof Explorer


Theorem lssbn

Description: A subspace of a Banach space is a Banach space iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses lssbn.x X=W𝑠U
lssbn.s S=LSubSpW
lssbn.j J=TopOpenW
Assertion lssbn WBanUSXBanUClsdJ

Proof

Step Hyp Ref Expression
1 lssbn.x X=W𝑠U
2 lssbn.s S=LSubSpW
3 lssbn.j J=TopOpenW
4 bnnvc WBanWNrmVec
5 1 2 lssnvc WNrmVecUSXNrmVec
6 4 5 sylan WBanUSXNrmVec
7 eqid ScalarW=ScalarW
8 1 7 resssca USScalarW=ScalarX
9 8 adantl WBanUSScalarW=ScalarX
10 7 bnsca WBanScalarWCMetSp
11 10 adantr WBanUSScalarWCMetSp
12 9 11 eqeltrrd WBanUSScalarXCMetSp
13 eqid ScalarX=ScalarX
14 13 isbn XBanXNrmVecXCMetSpScalarXCMetSp
15 3anan32 XNrmVecXCMetSpScalarXCMetSpXNrmVecScalarXCMetSpXCMetSp
16 14 15 bitri XBanXNrmVecScalarXCMetSpXCMetSp
17 16 baib XNrmVecScalarXCMetSpXBanXCMetSp
18 6 12 17 syl2anc WBanUSXBanXCMetSp
19 bncms WBanWCMetSp
20 eqid BaseW=BaseW
21 20 2 lssss USUBaseW
22 1 20 3 cmsss WCMetSpUBaseWXCMetSpUClsdJ
23 19 21 22 syl2an WBanUSXCMetSpUClsdJ
24 18 23 bitrd WBanUSXBanUClsdJ