Description: A subspace of a Banach space is a Banach space iff it is closed. (Contributed by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lssbn.x | |
|
lssbn.s | |
||
lssbn.j | |
||
Assertion | lssbn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssbn.x | |
|
2 | lssbn.s | |
|
3 | lssbn.j | |
|
4 | bnnvc | |
|
5 | 1 2 | lssnvc | |
6 | 4 5 | sylan | |
7 | eqid | |
|
8 | 1 7 | resssca | |
9 | 8 | adantl | |
10 | 7 | bnsca | |
11 | 10 | adantr | |
12 | 9 11 | eqeltrrd | |
13 | eqid | |
|
14 | 13 | isbn | |
15 | 3anan32 | |
|
16 | 14 15 | bitri | |
17 | 16 | baib | |
18 | 6 12 17 | syl2anc | |
19 | bncms | |
|
20 | eqid | |
|
21 | 20 2 | lssss | |
22 | 1 20 3 | cmsss | |
23 | 19 21 22 | syl2an | |
24 | 18 23 | bitrd | |