Description: A subspace of a normed vector space is a normed vector space. (Contributed by Mario Carneiro, 4-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lssnlm.x | |
|
lssnlm.s | |
||
Assertion | lssnvc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssnlm.x | |
|
2 | lssnlm.s | |
|
3 | nvcnlm | |
|
4 | 1 2 | lssnlm | |
5 | 3 4 | sylan | |
6 | eqid | |
|
7 | 1 6 | resssca | |
8 | 7 | adantl | |
9 | nvclvec | |
|
10 | 6 | lvecdrng | |
11 | 9 10 | syl | |
12 | 11 | adantr | |
13 | 8 12 | eqeltrrd | |
14 | eqid | |
|
15 | 14 | isnvc2 | |
16 | 5 13 15 | sylanbrc | |