Metamath Proof Explorer


Theorem lssnvc

Description: A subspace of a normed vector space is a normed vector space. (Contributed by Mario Carneiro, 4-Oct-2015)

Ref Expression
Hypotheses lssnlm.x X=W𝑠U
lssnlm.s S=LSubSpW
Assertion lssnvc WNrmVecUSXNrmVec

Proof

Step Hyp Ref Expression
1 lssnlm.x X=W𝑠U
2 lssnlm.s S=LSubSpW
3 nvcnlm WNrmVecWNrmMod
4 1 2 lssnlm WNrmModUSXNrmMod
5 3 4 sylan WNrmVecUSXNrmMod
6 eqid ScalarW=ScalarW
7 1 6 resssca USScalarW=ScalarX
8 7 adantl WNrmVecUSScalarW=ScalarX
9 nvclvec WNrmVecWLVec
10 6 lvecdrng WLVecScalarWDivRing
11 9 10 syl WNrmVecScalarWDivRing
12 11 adantr WNrmVecUSScalarWDivRing
13 8 12 eqeltrrd WNrmVecUSScalarXDivRing
14 eqid ScalarX=ScalarX
15 14 isnvc2 XNrmVecXNrmModScalarXDivRing
16 5 13 15 sylanbrc WNrmVecUSXNrmVec