| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsspropd.b1 |
|
| 2 |
|
lsspropd.b2 |
|
| 3 |
|
lsspropd.w |
|
| 4 |
|
lsspropd.p |
|
| 5 |
|
lsspropd.s1 |
|
| 6 |
|
lsspropd.s2 |
|
| 7 |
|
lsspropd.p1 |
|
| 8 |
|
lsspropd.p2 |
|
| 9 |
|
simpll |
|
| 10 |
|
simprl |
|
| 11 |
|
simplr |
|
| 12 |
|
simprrl |
|
| 13 |
11 12
|
sseldd |
|
| 14 |
5
|
ralrimivva |
|
| 15 |
14
|
ad2antrr |
|
| 16 |
|
ovrspc2v |
|
| 17 |
10 13 15 16
|
syl21anc |
|
| 18 |
3
|
ad2antrr |
|
| 19 |
|
simprrr |
|
| 20 |
11 19
|
sseldd |
|
| 21 |
18 20
|
sseldd |
|
| 22 |
4
|
oveqrspc2v |
|
| 23 |
9 17 21 22
|
syl12anc |
|
| 24 |
6
|
oveqrspc2v |
|
| 25 |
9 10 13 24
|
syl12anc |
|
| 26 |
25
|
oveq1d |
|
| 27 |
23 26
|
eqtrd |
|
| 28 |
27
|
eleq1d |
|
| 29 |
28
|
anassrs |
|
| 30 |
29
|
2ralbidva |
|
| 31 |
30
|
ralbidva |
|
| 32 |
31
|
anbi2d |
|
| 33 |
32
|
pm5.32da |
|
| 34 |
|
3anass |
|
| 35 |
|
3anass |
|
| 36 |
33 34 35
|
3bitr4g |
|
| 37 |
1
|
sseq2d |
|
| 38 |
7
|
raleqdv |
|
| 39 |
37 38
|
3anbi13d |
|
| 40 |
2
|
sseq2d |
|
| 41 |
8
|
raleqdv |
|
| 42 |
40 41
|
3anbi13d |
|
| 43 |
36 39 42
|
3bitr3d |
|
| 44 |
|
eqid |
|
| 45 |
|
eqid |
|
| 46 |
|
eqid |
|
| 47 |
|
eqid |
|
| 48 |
|
eqid |
|
| 49 |
|
eqid |
|
| 50 |
44 45 46 47 48 49
|
islss |
|
| 51 |
|
eqid |
|
| 52 |
|
eqid |
|
| 53 |
|
eqid |
|
| 54 |
|
eqid |
|
| 55 |
|
eqid |
|
| 56 |
|
eqid |
|
| 57 |
51 52 53 54 55 56
|
islss |
|
| 58 |
43 50 57
|
3bitr4g |
|
| 59 |
58
|
eqrdv |
|