Description: If two structures have the same components (properties), they have the same subspace structure. (Contributed by Mario Carneiro, 9-Feb-2015) (Revised by Mario Carneiro, 14-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsspropd.b1 | |
|
lsspropd.b2 | |
||
lsspropd.w | |
||
lsspropd.p | |
||
lsspropd.s1 | |
||
lsspropd.s2 | |
||
lsspropd.p1 | |
||
lsspropd.p2 | |
||
Assertion | lsspropd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsspropd.b1 | |
|
2 | lsspropd.b2 | |
|
3 | lsspropd.w | |
|
4 | lsspropd.p | |
|
5 | lsspropd.s1 | |
|
6 | lsspropd.s2 | |
|
7 | lsspropd.p1 | |
|
8 | lsspropd.p2 | |
|
9 | simpll | |
|
10 | simprl | |
|
11 | simplr | |
|
12 | simprrl | |
|
13 | 11 12 | sseldd | |
14 | 5 | ralrimivva | |
15 | 14 | ad2antrr | |
16 | ovrspc2v | |
|
17 | 10 13 15 16 | syl21anc | |
18 | 3 | ad2antrr | |
19 | simprrr | |
|
20 | 11 19 | sseldd | |
21 | 18 20 | sseldd | |
22 | 4 | oveqrspc2v | |
23 | 9 17 21 22 | syl12anc | |
24 | 6 | oveqrspc2v | |
25 | 9 10 13 24 | syl12anc | |
26 | 25 | oveq1d | |
27 | 23 26 | eqtrd | |
28 | 27 | eleq1d | |
29 | 28 | anassrs | |
30 | 29 | 2ralbidva | |
31 | 30 | ralbidva | |
32 | 31 | anbi2d | |
33 | 32 | pm5.32da | |
34 | 3anass | |
|
35 | 3anass | |
|
36 | 33 34 35 | 3bitr4g | |
37 | 1 | sseq2d | |
38 | 7 | raleqdv | |
39 | 37 38 | 3anbi13d | |
40 | 2 | sseq2d | |
41 | 8 | raleqdv | |
42 | 40 41 | 3anbi13d | |
43 | 36 39 42 | 3bitr3d | |
44 | eqid | |
|
45 | eqid | |
|
46 | eqid | |
|
47 | eqid | |
|
48 | eqid | |
|
49 | eqid | |
|
50 | 44 45 46 47 48 49 | islss | |
51 | eqid | |
|
52 | eqid | |
|
53 | eqid | |
|
54 | eqid | |
|
55 | eqid | |
|
56 | eqid | |
|
57 | 51 52 53 54 55 56 | islss | |
58 | 43 50 57 | 3bitr4g | |
59 | 58 | eqrdv | |