Metamath Proof Explorer


Theorem lssvscl

Description: Closure of scalar product in a subspace. (Contributed by NM, 11-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lssvscl.f F=ScalarW
lssvscl.t ·˙=W
lssvscl.b B=BaseF
lssvscl.s S=LSubSpW
Assertion lssvscl WLModUSXBYUX·˙YU

Proof

Step Hyp Ref Expression
1 lssvscl.f F=ScalarW
2 lssvscl.t ·˙=W
3 lssvscl.b B=BaseF
4 lssvscl.s S=LSubSpW
5 simpll WLModUSXBYUWLMod
6 simprl WLModUSXBYUXB
7 eqid BaseW=BaseW
8 7 4 lssel USYUYBaseW
9 8 ad2ant2l WLModUSXBYUYBaseW
10 7 1 2 3 lmodvscl WLModXBYBaseWX·˙YBaseW
11 5 6 9 10 syl3anc WLModUSXBYUX·˙YBaseW
12 eqid +W=+W
13 eqid 0W=0W
14 7 12 13 lmod0vrid WLModX·˙YBaseWX·˙Y+W0W=X·˙Y
15 5 11 14 syl2anc WLModUSXBYUX·˙Y+W0W=X·˙Y
16 simplr WLModUSXBYUUS
17 simprr WLModUSXBYUYU
18 13 4 lss0cl WLModUS0WU
19 18 adantr WLModUSXBYU0WU
20 1 3 12 2 4 lsscl USXBYU0WUX·˙Y+W0WU
21 16 6 17 19 20 syl13anc WLModUSXBYUX·˙Y+W0WU
22 15 21 eqeltrrd WLModUSXBYUX·˙YU