Description: Closure of scalar product in a subspace. (Contributed by NM, 11-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lssvscl.f | |
|
lssvscl.t | |
||
lssvscl.b | |
||
lssvscl.s | |
||
Assertion | lssvscl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lssvscl.f | |
|
2 | lssvscl.t | |
|
3 | lssvscl.b | |
|
4 | lssvscl.s | |
|
5 | simpll | |
|
6 | simprl | |
|
7 | eqid | |
|
8 | 7 4 | lssel | |
9 | 8 | ad2ant2l | |
10 | 7 1 2 3 | lmodvscl | |
11 | 5 6 9 10 | syl3anc | |
12 | eqid | |
|
13 | eqid | |
|
14 | 7 12 13 | lmod0vrid | |
15 | 5 11 14 | syl2anc | |
16 | simplr | |
|
17 | simprr | |
|
18 | 13 4 | lss0cl | |
19 | 18 | adantr | |
20 | 1 3 12 2 4 | lsscl | |
21 | 16 6 17 19 20 | syl13anc | |
22 | 15 21 | eqeltrrd | |