| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ltrelnq |  | 
						
							| 2 | 1 | brel |  | 
						
							| 3 | 2 | simprd |  | 
						
							| 4 |  | ltexnq |  | 
						
							| 5 |  | eleq1 |  | 
						
							| 6 | 5 | biimparc |  | 
						
							| 7 |  | addnqf |  | 
						
							| 8 | 7 | fdmi |  | 
						
							| 9 |  | 0nnq |  | 
						
							| 10 | 8 9 | ndmovrcl |  | 
						
							| 11 | 6 10 | syl |  | 
						
							| 12 | 11 | simprd |  | 
						
							| 13 |  | nsmallnq |  | 
						
							| 14 | 11 | simpld |  | 
						
							| 15 | 1 | brel |  | 
						
							| 16 | 15 | simpld |  | 
						
							| 17 |  | ltaddnq |  | 
						
							| 18 | 14 16 17 | syl2an |  | 
						
							| 19 |  | ltanq |  | 
						
							| 20 | 19 | biimpa |  | 
						
							| 21 | 14 20 | sylan |  | 
						
							| 22 |  | simplr |  | 
						
							| 23 | 21 22 | breqtrd |  | 
						
							| 24 |  | ovex |  | 
						
							| 25 |  | breq2 |  | 
						
							| 26 |  | breq1 |  | 
						
							| 27 | 25 26 | anbi12d |  | 
						
							| 28 | 24 27 | spcev |  | 
						
							| 29 | 18 23 28 | syl2anc |  | 
						
							| 30 | 29 | ex |  | 
						
							| 31 | 30 | exlimdv |  | 
						
							| 32 | 13 31 | syl5 |  | 
						
							| 33 | 12 32 | mpd |  | 
						
							| 34 | 33 | ex |  | 
						
							| 35 | 34 | exlimdv |  | 
						
							| 36 | 4 35 | sylbid |  | 
						
							| 37 | 3 36 | mpcom |  | 
						
							| 38 |  | ltsonq |  | 
						
							| 39 | 38 1 | sotri |  | 
						
							| 40 | 39 | exlimiv |  | 
						
							| 41 | 37 40 | impbii |  |