Metamath Proof Explorer


Theorem ltdifltdiv

Description: If the dividend of a division is less than the difference between a real number and the divisor, the floor function of the division plus 1 is less than the division of the real number by the divisor. (Contributed by Alexander van der Vekens, 14-Apr-2018)

Ref Expression
Assertion ltdifltdiv AB+CA<CBAB+1<CB

Proof

Step Hyp Ref Expression
1 refldivcl AB+AB
2 peano2re ABAB+1
3 1 2 syl AB+AB+1
4 3 3adant3 AB+CAB+1
5 4 adantr AB+CA<CBAB+1
6 rerpdivcl AB+AB
7 peano2re ABAB+1
8 6 7 syl AB+AB+1
9 8 3adant3 AB+CAB+1
10 9 adantr AB+CA<CBAB+1
11 rerpdivcl CB+CB
12 11 ancoms B+CCB
13 12 3adant1 AB+CCB
14 13 adantr AB+CA<CBCB
15 1 3adant3 AB+CAB
16 15 adantr AB+CA<CBAB
17 6 3adant3 AB+CAB
18 17 adantr AB+CA<CBAB
19 1red AB+CA<CB1
20 3simpa AB+CAB+
21 20 adantr AB+CA<CBAB+
22 fldivle AB+ABAB
23 21 22 syl AB+CA<CBABAB
24 16 18 19 23 leadd1dd AB+CA<CBAB+1AB+1
25 rpre B+B
26 ltaddsub ABCA+B<CA<CB
27 25 26 syl3an2 AB+CA+B<CA<CB
28 27 biimpar AB+CA<CBA+B<C
29 recn ABAB
30 6 29 syl AB+AB
31 30 3adant3 AB+CAB
32 rpcn B+B
33 32 3ad2ant2 AB+CB
34 1cnd AB+C1
35 recn AA
36 35 3ad2ant1 AB+CA
37 rpne0 B+B0
38 37 3ad2ant2 AB+CB0
39 36 33 38 divcan1d AB+CABB=A
40 32 mullidd B+1B=B
41 40 3ad2ant2 AB+C1B=B
42 39 41 oveq12d AB+CABB+1B=A+B
43 31 33 34 42 joinlmuladdmuld AB+CAB+1B=A+B
44 recn CC
45 44 3ad2ant3 AB+CC
46 45 33 38 divcan1d AB+CCBB=C
47 43 46 breq12d AB+CAB+1B<CBBA+B<C
48 47 adantr AB+CA<CBAB+1B<CBBA+B<C
49 28 48 mpbird AB+CA<CBAB+1B<CBB
50 17 7 syl AB+CAB+1
51 simp2 AB+CB+
52 50 13 51 ltmul1d AB+CAB+1<CBAB+1B<CBB
53 52 adantr AB+CA<CBAB+1<CBAB+1B<CBB
54 49 53 mpbird AB+CA<CBAB+1<CB
55 5 10 14 24 54 lelttrd AB+CA<CBAB+1<CB
56 55 ex AB+CA<CBAB+1<CB