Metamath Proof Explorer


Theorem ltexp2a

Description: Exponent ordering relationship for exponentiation of a fixed real base greater than 1 to integer exponents. (Contributed by NM, 2-Aug-2006) (Revised by Mario Carneiro, 4-Jun-2014)

Ref Expression
Assertion ltexp2a AMN1<AM<NAM<AN

Proof

Step Hyp Ref Expression
1 simpl1 AMN1<AM<NA
2 0red AMN1<AM<N0
3 1red AMN1<AM<N1
4 0lt1 0<1
5 4 a1i AMN1<AM<N0<1
6 simprl AMN1<AM<N1<A
7 2 3 1 5 6 lttrd AMN1<AM<N0<A
8 1 7 elrpd AMN1<AM<NA+
9 simpl2 AMN1<AM<NM
10 rpexpcl A+MAM+
11 8 9 10 syl2anc AMN1<AM<NAM+
12 11 rpred AMN1<AM<NAM
13 12 recnd AMN1<AM<NAM
14 13 mullidd AMN1<AM<N1AM=AM
15 simprr AMN1<AM<NM<N
16 simpl3 AMN1<AM<NN
17 znnsub MNM<NNM
18 9 16 17 syl2anc AMN1<AM<NM<NNM
19 15 18 mpbid AMN1<AM<NNM
20 expgt1 ANM1<A1<ANM
21 1 19 6 20 syl3anc AMN1<AM<N1<ANM
22 1 recnd AMN1<AM<NA
23 7 gt0ne0d AMN1<AM<NA0
24 expsub AA0NMANM=ANAM
25 22 23 16 9 24 syl22anc AMN1<AM<NANM=ANAM
26 21 25 breqtrd AMN1<AM<N1<ANAM
27 rpexpcl A+NAN+
28 8 16 27 syl2anc AMN1<AM<NAN+
29 28 rpred AMN1<AM<NAN
30 3 29 11 ltmuldivd AMN1<AM<N1AM<AN1<ANAM
31 26 30 mpbird AMN1<AM<N1AM<AN
32 14 31 eqbrtrrd AMN1<AM<NAM<AN