Description: Exponent ordering relationship for exponentiation of a fixed real base greater than 1 to integer exponents. (Contributed by NM, 2-Aug-2006) (Revised by Mario Carneiro, 4-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | ltexp2a | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 | |
|
2 | 0red | |
|
3 | 1red | |
|
4 | 0lt1 | |
|
5 | 4 | a1i | |
6 | simprl | |
|
7 | 2 3 1 5 6 | lttrd | |
8 | 1 7 | elrpd | |
9 | simpl2 | |
|
10 | rpexpcl | |
|
11 | 8 9 10 | syl2anc | |
12 | 11 | rpred | |
13 | 12 | recnd | |
14 | 13 | mullidd | |
15 | simprr | |
|
16 | simpl3 | |
|
17 | znnsub | |
|
18 | 9 16 17 | syl2anc | |
19 | 15 18 | mpbid | |
20 | expgt1 | |
|
21 | 1 19 6 20 | syl3anc | |
22 | 1 | recnd | |
23 | 7 | gt0ne0d | |
24 | expsub | |
|
25 | 22 23 16 9 24 | syl22anc | |
26 | 21 25 | breqtrd | |
27 | rpexpcl | |
|
28 | 8 16 27 | syl2anc | |
29 | 28 | rpred | |
30 | 3 29 11 | ltmuldivd | |
31 | 26 30 | mpbird | |
32 | 14 31 | eqbrtrrd | |