Metamath Proof Explorer


Theorem ltleadd

Description: Adding both sides of two orderings. (Contributed by NM, 23-Dec-2007)

Ref Expression
Assertion ltleadd ABCDA<CBDA+B<C+D

Proof

Step Hyp Ref Expression
1 ltadd1 ACBA<CA+B<C+B
2 1 3com23 ABCA<CA+B<C+B
3 2 3expa ABCA<CA+B<C+B
4 3 adantrr ABCDA<CA+B<C+B
5 leadd2 BDCBDC+BC+D
6 5 3com23 BCDBDC+BC+D
7 6 3expb BCDBDC+BC+D
8 7 adantll ABCDBDC+BC+D
9 4 8 anbi12d ABCDA<CBDA+B<C+BC+BC+D
10 readdcl ABA+B
11 10 adantr ABCDA+B
12 readdcl CBC+B
13 12 ancoms BCC+B
14 13 ad2ant2lr ABCDC+B
15 readdcl CDC+D
16 15 adantl ABCDC+D
17 ltletr A+BC+BC+DA+B<C+BC+BC+DA+B<C+D
18 11 14 16 17 syl3anc ABCDA+B<C+BC+BC+DA+B<C+D
19 9 18 sylbid ABCDA<CBDA+B<C+D