Metamath Proof Explorer


Theorem ltleadd

Description: Adding both sides of two orderings. (Contributed by NM, 23-Dec-2007)

Ref Expression
Assertion ltleadd A B C D A < C B D A + B < C + D

Proof

Step Hyp Ref Expression
1 ltadd1 A C B A < C A + B < C + B
2 1 3com23 A B C A < C A + B < C + B
3 2 3expa A B C A < C A + B < C + B
4 3 adantrr A B C D A < C A + B < C + B
5 leadd2 B D C B D C + B C + D
6 5 3com23 B C D B D C + B C + D
7 6 3expb B C D B D C + B C + D
8 7 adantll A B C D B D C + B C + D
9 4 8 anbi12d A B C D A < C B D A + B < C + B C + B C + D
10 readdcl A B A + B
11 10 adantr A B C D A + B
12 readdcl C B C + B
13 12 ancoms B C C + B
14 13 ad2ant2lr A B C D C + B
15 readdcl C D C + D
16 15 adantl A B C D C + D
17 ltletr A + B C + B C + D A + B < C + B C + B C + D A + B < C + D
18 11 14 16 17 syl3anc A B C D A + B < C + B C + B C + D A + B < C + D
19 9 18 sylbid A B C D A < C B D A + B < C + D