Metamath Proof Explorer


Theorem ltmpi

Description: Ordering property of multiplication for positive integers. (Contributed by NM, 8-Feb-1996) (New usage is discouraged.)

Ref Expression
Assertion ltmpi C𝑵A<𝑵BC𝑵A<𝑵C𝑵B

Proof

Step Hyp Ref Expression
1 dmmulpi dom𝑵=𝑵×𝑵
2 ltrelpi <𝑵𝑵×𝑵
3 0npi ¬𝑵
4 pinn A𝑵Aω
5 pinn B𝑵Bω
6 elni2 C𝑵CωC
7 iba CABABC
8 nnmord AωBωCωABCC𝑜AC𝑜B
9 7 8 sylan9bbr AωBωCωCABC𝑜AC𝑜B
10 9 3exp1 AωBωCωCABC𝑜AC𝑜B
11 10 imp4b AωBωCωCABC𝑜AC𝑜B
12 6 11 biimtrid AωBωC𝑵ABC𝑜AC𝑜B
13 4 5 12 syl2an A𝑵B𝑵C𝑵ABC𝑜AC𝑜B
14 13 imp A𝑵B𝑵C𝑵ABC𝑜AC𝑜B
15 ltpiord A𝑵B𝑵A<𝑵BAB
16 15 adantr A𝑵B𝑵C𝑵A<𝑵BAB
17 mulclpi C𝑵A𝑵C𝑵A𝑵
18 mulclpi C𝑵B𝑵C𝑵B𝑵
19 ltpiord C𝑵A𝑵C𝑵B𝑵C𝑵A<𝑵C𝑵BC𝑵AC𝑵B
20 17 18 19 syl2an C𝑵A𝑵C𝑵B𝑵C𝑵A<𝑵C𝑵BC𝑵AC𝑵B
21 mulpiord C𝑵A𝑵C𝑵A=C𝑜A
22 21 adantr C𝑵A𝑵C𝑵B𝑵C𝑵A=C𝑜A
23 mulpiord C𝑵B𝑵C𝑵B=C𝑜B
24 23 adantl C𝑵A𝑵C𝑵B𝑵C𝑵B=C𝑜B
25 22 24 eleq12d C𝑵A𝑵C𝑵B𝑵C𝑵AC𝑵BC𝑜AC𝑜B
26 20 25 bitrd C𝑵A𝑵C𝑵B𝑵C𝑵A<𝑵C𝑵BC𝑜AC𝑜B
27 26 anandis C𝑵A𝑵B𝑵C𝑵A<𝑵C𝑵BC𝑜AC𝑜B
28 27 ancoms A𝑵B𝑵C𝑵C𝑵A<𝑵C𝑵BC𝑜AC𝑜B
29 14 16 28 3bitr4d A𝑵B𝑵C𝑵A<𝑵BC𝑵A<𝑵C𝑵B
30 29 3impa A𝑵B𝑵C𝑵A<𝑵BC𝑵A<𝑵C𝑵B
31 1 2 3 30 ndmovord C𝑵A<𝑵BC𝑵A<𝑵C𝑵B