Metamath Proof Explorer


Theorem lvecdimfi

Description: Finite version of lvecdim which does not require the axiom of choice. The axiom of choice is used in acsmapd , which is required in the infinite case. Suggested by Gérard Lang. (Contributed by Thierry Arnoux, 24-May-2023)

Ref Expression
Hypotheses lvecdimfi.j J=LBasisW
lvecdimfi.w φWLVec
lvecdimfi.s φSJ
lvecdimfi.t φTJ
lvecdimfi.f φSFin
Assertion lvecdimfi φST

Proof

Step Hyp Ref Expression
1 lvecdimfi.j J=LBasisW
2 lvecdimfi.w φWLVec
3 lvecdimfi.s φSJ
4 lvecdimfi.t φTJ
5 lvecdimfi.f φSFin
6 eqid LSubSpW=LSubSpW
7 eqid mrClsLSubSpW=mrClsLSubSpW
8 eqid BaseW=BaseW
9 6 7 8 lssacsex WLVecLSubSpWACSBaseWx𝒫BaseWyBaseWzmrClsLSubSpWxymrClsLSubSpWxymrClsLSubSpWxz
10 2 9 syl φLSubSpWACSBaseWx𝒫BaseWyBaseWzmrClsLSubSpWxymrClsLSubSpWxymrClsLSubSpWxz
11 10 simpld φLSubSpWACSBaseW
12 11 acsmred φLSubSpWMooreBaseW
13 eqid mrIndLSubSpW=mrIndLSubSpW
14 10 simprd φx𝒫BaseWyBaseWzmrClsLSubSpWxymrClsLSubSpWxymrClsLSubSpWxz
15 6 7 8 13 1 lbsacsbs WLVecSJSmrIndLSubSpWmrClsLSubSpWS=BaseW
16 15 biimpa WLVecSJSmrIndLSubSpWmrClsLSubSpWS=BaseW
17 2 3 16 syl2anc φSmrIndLSubSpWmrClsLSubSpWS=BaseW
18 17 simpld φSmrIndLSubSpW
19 6 7 8 13 1 lbsacsbs WLVecTJTmrIndLSubSpWmrClsLSubSpWT=BaseW
20 19 biimpa WLVecTJTmrIndLSubSpWmrClsLSubSpWT=BaseW
21 2 4 20 syl2anc φTmrIndLSubSpWmrClsLSubSpWT=BaseW
22 21 simpld φTmrIndLSubSpW
23 17 simprd φmrClsLSubSpWS=BaseW
24 21 simprd φmrClsLSubSpWT=BaseW
25 23 24 eqtr4d φmrClsLSubSpWS=mrClsLSubSpWT
26 12 7 13 14 18 22 5 25 mreexfidimd φST