| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2z |  | 
						
							| 2 |  | divides |  | 
						
							| 3 | 1 2 | mpan |  | 
						
							| 4 |  | oveq2 |  | 
						
							| 5 | 4 | eqcoms |  | 
						
							| 6 |  | zcn |  | 
						
							| 7 |  | 2cnd |  | 
						
							| 8 | 6 7 | mulcomd |  | 
						
							| 9 | 8 | oveq2d |  | 
						
							| 10 |  | m1expeven |  | 
						
							| 11 | 9 10 | eqtrd |  | 
						
							| 12 | 5 11 | sylan9eqr |  | 
						
							| 13 | 12 | rexlimiva |  | 
						
							| 14 | 3 13 | biimtrdi |  | 
						
							| 15 | 14 | impcom |  | 
						
							| 16 |  | simpl |  | 
						
							| 17 | 15 16 | 2thd |  | 
						
							| 18 |  | ax-1ne0 |  | 
						
							| 19 |  | eqcom |  | 
						
							| 20 |  | ax-1cn |  | 
						
							| 21 | 20 | eqnegi |  | 
						
							| 22 | 19 21 | bitri |  | 
						
							| 23 | 18 22 | nemtbir |  | 
						
							| 24 |  | odd2np1 |  | 
						
							| 25 |  | oveq2 |  | 
						
							| 26 | 25 | eqcoms |  | 
						
							| 27 |  | neg1cn |  | 
						
							| 28 | 27 | a1i |  | 
						
							| 29 |  | neg1ne0 |  | 
						
							| 30 | 29 | a1i |  | 
						
							| 31 | 1 | a1i |  | 
						
							| 32 |  | id |  | 
						
							| 33 | 31 32 | zmulcld |  | 
						
							| 34 | 28 30 33 | expp1zd |  | 
						
							| 35 | 10 | oveq1d |  | 
						
							| 36 | 27 | mullidi |  | 
						
							| 37 | 35 36 | eqtrdi |  | 
						
							| 38 | 34 37 | eqtrd |  | 
						
							| 39 | 26 38 | sylan9eqr |  | 
						
							| 40 | 39 | rexlimiva |  | 
						
							| 41 | 24 40 | biimtrdi |  | 
						
							| 42 | 41 | impcom |  | 
						
							| 43 | 42 | eqeq1d |  | 
						
							| 44 | 23 43 | mtbiri |  | 
						
							| 45 |  | simpl |  | 
						
							| 46 | 44 45 | 2falsed |  | 
						
							| 47 | 17 46 | pm2.61ian |  |