Description: The result of a matrix transformation is a constant polynomial matrix. (Contributed by AV, 18-Nov-2019) (Proof shortened by AV, 28-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | m2cpm.s | |
|
m2cpm.t | |
||
m2cpm.a | |
||
m2cpm.b | |
||
Assertion | m2cpm | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | m2cpm.s | |
|
2 | m2cpm.t | |
|
3 | m2cpm.a | |
|
4 | m2cpm.b | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | 2 3 4 5 6 | mat2pmatvalel | |
8 | 7 | adantr | |
9 | 8 | fveq2d | |
10 | 9 | fveq1d | |
11 | simpl2 | |
|
12 | eqid | |
|
13 | simprl | |
|
14 | simprr | |
|
15 | simpl3 | |
|
16 | 3 12 4 13 14 15 | matecld | |
17 | 11 16 | jca | |
18 | 17 | adantr | |
19 | eqid | |
|
20 | 5 6 12 19 | coe1scl | |
21 | 18 20 | syl | |
22 | eqeq1 | |
|
23 | 22 | ifbid | |
24 | 23 | adantl | |
25 | nnnn0 | |
|
26 | 25 | adantl | |
27 | ovex | |
|
28 | fvex | |
|
29 | 27 28 | ifex | |
30 | 29 | a1i | |
31 | 21 24 26 30 | fvmptd | |
32 | nnne0 | |
|
33 | 32 | neneqd | |
34 | 33 | adantl | |
35 | 34 | iffalsed | |
36 | 10 31 35 | 3eqtrd | |
37 | 36 | ralrimiva | |
38 | 37 | ralrimivva | |
39 | eqid | |
|
40 | 2 3 4 5 39 | mat2pmatbas | |
41 | eqid | |
|
42 | 1 5 39 41 | cpmatel | |
43 | 40 42 | syld3an3 | |
44 | 38 43 | mpbird | |