Metamath Proof Explorer


Theorem m2cpm

Description: The result of a matrix transformation is a constant polynomial matrix. (Contributed by AV, 18-Nov-2019) (Proof shortened by AV, 28-Nov-2019)

Ref Expression
Hypotheses m2cpm.s S=NConstPolyMatR
m2cpm.t T=NmatToPolyMatR
m2cpm.a A=NMatR
m2cpm.b B=BaseA
Assertion m2cpm NFinRRingMBTMS

Proof

Step Hyp Ref Expression
1 m2cpm.s S=NConstPolyMatR
2 m2cpm.t T=NmatToPolyMatR
3 m2cpm.a A=NMatR
4 m2cpm.b B=BaseA
5 eqid Poly1R=Poly1R
6 eqid algScPoly1R=algScPoly1R
7 2 3 4 5 6 mat2pmatvalel NFinRRingMBiNjNiTMj=algScPoly1RiMj
8 7 adantr NFinRRingMBiNjNniTMj=algScPoly1RiMj
9 8 fveq2d NFinRRingMBiNjNncoe1iTMj=coe1algScPoly1RiMj
10 9 fveq1d NFinRRingMBiNjNncoe1iTMjn=coe1algScPoly1RiMjn
11 simpl2 NFinRRingMBiNjNRRing
12 eqid BaseR=BaseR
13 simprl NFinRRingMBiNjNiN
14 simprr NFinRRingMBiNjNjN
15 simpl3 NFinRRingMBiNjNMB
16 3 12 4 13 14 15 matecld NFinRRingMBiNjNiMjBaseR
17 11 16 jca NFinRRingMBiNjNRRingiMjBaseR
18 17 adantr NFinRRingMBiNjNnRRingiMjBaseR
19 eqid 0R=0R
20 5 6 12 19 coe1scl RRingiMjBaseRcoe1algScPoly1RiMj=k0ifk=0iMj0R
21 18 20 syl NFinRRingMBiNjNncoe1algScPoly1RiMj=k0ifk=0iMj0R
22 eqeq1 k=nk=0n=0
23 22 ifbid k=nifk=0iMj0R=ifn=0iMj0R
24 23 adantl NFinRRingMBiNjNnk=nifk=0iMj0R=ifn=0iMj0R
25 nnnn0 nn0
26 25 adantl NFinRRingMBiNjNnn0
27 ovex iMjV
28 fvex 0RV
29 27 28 ifex ifn=0iMj0RV
30 29 a1i NFinRRingMBiNjNnifn=0iMj0RV
31 21 24 26 30 fvmptd NFinRRingMBiNjNncoe1algScPoly1RiMjn=ifn=0iMj0R
32 nnne0 nn0
33 32 neneqd n¬n=0
34 33 adantl NFinRRingMBiNjNn¬n=0
35 34 iffalsed NFinRRingMBiNjNnifn=0iMj0R=0R
36 10 31 35 3eqtrd NFinRRingMBiNjNncoe1iTMjn=0R
37 36 ralrimiva NFinRRingMBiNjNncoe1iTMjn=0R
38 37 ralrimivva NFinRRingMBiNjNncoe1iTMjn=0R
39 eqid NMatPoly1R=NMatPoly1R
40 2 3 4 5 39 mat2pmatbas NFinRRingMBTMBaseNMatPoly1R
41 eqid BaseNMatPoly1R=BaseNMatPoly1R
42 1 5 39 41 cpmatel NFinRRingTMBaseNMatPoly1RTMSiNjNncoe1iTMjn=0R
43 40 42 syld3an3 NFinRRingMBTMSiNjNncoe1iTMjn=0R
44 38 43 mpbird NFinRRingMBTMS