Metamath Proof Explorer


Theorem m2detleiblem1

Description: Lemma 1 for m2detleib . (Contributed by AV, 12-Dec-2018)

Ref Expression
Hypotheses m2detleiblem1.n N = 1 2
m2detleiblem1.p P = Base SymGrp N
m2detleiblem1.y Y = ℤRHom R
m2detleiblem1.s S = pmSgn N
m2detleiblem1.o 1 ˙ = 1 R
Assertion m2detleiblem1 R Ring Q P Y S Q = pmSgn N Q R 1 ˙

Proof

Step Hyp Ref Expression
1 m2detleiblem1.n N = 1 2
2 m2detleiblem1.p P = Base SymGrp N
3 m2detleiblem1.y Y = ℤRHom R
4 m2detleiblem1.s S = pmSgn N
5 m2detleiblem1.o 1 ˙ = 1 R
6 elpri Q 1 1 2 2 1 2 2 1 Q = 1 1 2 2 Q = 1 2 2 1
7 fveq2 Q = 1 1 2 2 S Q = S 1 1 2 2
8 eqid SymGrp N = SymGrp N
9 eqid ran pmTrsp N = ran pmTrsp N
10 1 8 2 9 4 psgnprfval1 S 1 1 2 2 = 1
11 7 10 eqtrdi Q = 1 1 2 2 S Q = 1
12 1z 1
13 11 12 eqeltrdi Q = 1 1 2 2 S Q
14 fveq2 Q = 1 2 2 1 S Q = S 1 2 2 1
15 1 8 2 9 4 psgnprfval2 S 1 2 2 1 = 1
16 14 15 eqtrdi Q = 1 2 2 1 S Q = 1
17 neg1z 1
18 16 17 eqeltrdi Q = 1 2 2 1 S Q
19 13 18 jaoi Q = 1 1 2 2 Q = 1 2 2 1 S Q
20 6 19 syl Q 1 1 2 2 1 2 2 1 S Q
21 1ex 1 V
22 2nn 2
23 8 2 1 symg2bas 1 V 2 P = 1 1 2 2 1 2 2 1
24 21 22 23 mp2an P = 1 1 2 2 1 2 2 1
25 20 24 eleq2s Q P S Q
26 eqid R = R
27 3 26 5 zrhmulg R Ring S Q Y S Q = S Q R 1 ˙
28 25 27 sylan2 R Ring Q P Y S Q = S Q R 1 ˙
29 4 a1i R Ring Q P S = pmSgn N
30 29 fveq1d R Ring Q P S Q = pmSgn N Q
31 30 oveq1d R Ring Q P S Q R 1 ˙ = pmSgn N Q R 1 ˙
32 28 31 eqtrd R Ring Q P Y S Q = pmSgn N Q R 1 ˙