Metamath Proof Explorer


Theorem madetsmelbas2

Description: A summand of the determinant of a matrix belongs to the underlying ring. (Contributed by AV, 1-Jan-2019)

Ref Expression
Hypotheses madetsmelbas.p P=BaseSymGrpN
madetsmelbas.s S=pmSgnN
madetsmelbas.y Y=ℤRHomR
madetsmelbas.a A=NMatR
madetsmelbas.b B=BaseA
madetsmelbas.g G=mulGrpR
Assertion madetsmelbas2 RCRingMBQPYSQRGnNnMQnBaseR

Proof

Step Hyp Ref Expression
1 madetsmelbas.p P=BaseSymGrpN
2 madetsmelbas.s S=pmSgnN
3 madetsmelbas.y Y=ℤRHomR
4 madetsmelbas.a A=NMatR
5 madetsmelbas.b B=BaseA
6 madetsmelbas.g G=mulGrpR
7 crngring RCRingRRing
8 7 3ad2ant1 RCRingMBQPRRing
9 4 5 matrcl MBNFinRV
10 9 simpld MBNFin
11 10 3ad2ant2 RCRingMBQPNFin
12 simp3 RCRingMBQPQP
13 1 2 3 zrhcopsgnelbas RRingNFinQPYSQBaseR
14 8 11 12 13 syl3anc RCRingMBQPYSQBaseR
15 eqid BaseR=BaseR
16 6 15 mgpbas BaseR=BaseG
17 6 crngmgp RCRingGCMnd
18 17 3ad2ant1 RCRingMBQPGCMnd
19 simp2 RCRingMBQPMB
20 4 5 1 matepm2cl RRingQPMBnNnMQnBaseR
21 8 12 19 20 syl3anc RCRingMBQPnNnMQnBaseR
22 16 18 11 21 gsummptcl RCRingMBQPGnNnMQnBaseR
23 eqid R=R
24 15 23 ringcl RRingYSQBaseRGnNnMQnBaseRYSQRGnNnMQnBaseR
25 8 14 22 24 syl3anc RCRingMBQPYSQRGnNnMQnBaseR