Metamath Proof Explorer


Theorem mamures

Description: Rows in a matrix product are functions only of the corresponding rows in the left argument. (Contributed by SO, 9-Jul-2018)

Ref Expression
Hypotheses mamures.f F=RmaMulMNP
mamures.g G=RmaMulINP
mamures.b B=BaseR
mamures.r φRV
mamures.m φMFin
mamures.n φNFin
mamures.p φPFin
mamures.i φIM
mamures.x φXBM×N
mamures.y φYBN×P
Assertion mamures φXFYI×P=XI×NGY

Proof

Step Hyp Ref Expression
1 mamures.f F=RmaMulMNP
2 mamures.g G=RmaMulINP
3 mamures.b B=BaseR
4 mamures.r φRV
5 mamures.m φMFin
6 mamures.n φNFin
7 mamures.p φPFin
8 mamures.i φIM
9 mamures.x φXBM×N
10 mamures.y φYBN×P
11 ssidd φPP
12 resmpo IMPPiM,jPRkNiXkRkYjI×P=iI,jPRkNiXkRkYj
13 8 11 12 syl2anc φiM,jPRkNiXkRkYjI×P=iI,jPRkNiXkRkYj
14 ovres iIkNiXI×Nk=iXk
15 14 3ad2antl2 φiIjPkNiXI×Nk=iXk
16 15 eqcomd φiIjPkNiXk=iXI×Nk
17 16 oveq1d φiIjPkNiXkRkYj=iXI×NkRkYj
18 17 mpteq2dva φiIjPkNiXkRkYj=kNiXI×NkRkYj
19 18 oveq2d φiIjPRkNiXkRkYj=RkNiXI×NkRkYj
20 19 mpoeq3dva φiI,jPRkNiXkRkYj=iI,jPRkNiXI×NkRkYj
21 13 20 eqtrd φiM,jPRkNiXkRkYjI×P=iI,jPRkNiXI×NkRkYj
22 eqid R=R
23 1 3 22 4 5 6 7 9 10 mamuval φXFY=iM,jPRkNiXkRkYj
24 23 reseq1d φXFYI×P=iM,jPRkNiXkRkYjI×P
25 5 8 ssfid φIFin
26 elmapi XBM×NX:M×NB
27 9 26 syl φX:M×NB
28 xpss1 IMI×NM×N
29 8 28 syl φI×NM×N
30 27 29 fssresd φXI×N:I×NB
31 3 fvexi BV
32 31 a1i φBV
33 xpfi IFinNFinI×NFin
34 25 6 33 syl2anc φI×NFin
35 32 34 elmapd φXI×NBI×NXI×N:I×NB
36 30 35 mpbird φXI×NBI×N
37 2 3 22 4 25 6 7 36 10 mamuval φXI×NGY=iI,jPRkNiXI×NkRkYj
38 21 24 37 3eqtr4d φXFYI×P=XI×NGY