Metamath Proof Explorer


Theorem mapdffval

Description: Projectivity from vector space H to dual space. (Contributed by NM, 25-Jan-2015)

Ref Expression
Hypothesis mapdval.h H=LHypK
Assertion mapdffval KXmapdK=wHsLSubSpDVecHKwfLFnlDVecHKw|ocHKwocHKwLKerDVecHKwf=LKerDVecHKwfocHKwLKerDVecHKwfs

Proof

Step Hyp Ref Expression
1 mapdval.h H=LHypK
2 elex KXKV
3 fveq2 k=KLHypk=LHypK
4 3 1 eqtr4di k=KLHypk=H
5 fveq2 k=KDVecHk=DVecHK
6 5 fveq1d k=KDVecHkw=DVecHKw
7 6 fveq2d k=KLSubSpDVecHkw=LSubSpDVecHKw
8 6 fveq2d k=KLFnlDVecHkw=LFnlDVecHKw
9 fveq2 k=KocHk=ocHK
10 9 fveq1d k=KocHkw=ocHKw
11 6 fveq2d k=KLKerDVecHkw=LKerDVecHKw
12 11 fveq1d k=KLKerDVecHkwf=LKerDVecHKwf
13 10 12 fveq12d k=KocHkwLKerDVecHkwf=ocHKwLKerDVecHKwf
14 10 13 fveq12d k=KocHkwocHkwLKerDVecHkwf=ocHKwocHKwLKerDVecHKwf
15 14 12 eqeq12d k=KocHkwocHkwLKerDVecHkwf=LKerDVecHkwfocHKwocHKwLKerDVecHKwf=LKerDVecHKwf
16 13 sseq1d k=KocHkwLKerDVecHkwfsocHKwLKerDVecHKwfs
17 15 16 anbi12d k=KocHkwocHkwLKerDVecHkwf=LKerDVecHkwfocHkwLKerDVecHkwfsocHKwocHKwLKerDVecHKwf=LKerDVecHKwfocHKwLKerDVecHKwfs
18 8 17 rabeqbidv k=KfLFnlDVecHkw|ocHkwocHkwLKerDVecHkwf=LKerDVecHkwfocHkwLKerDVecHkwfs=fLFnlDVecHKw|ocHKwocHKwLKerDVecHKwf=LKerDVecHKwfocHKwLKerDVecHKwfs
19 7 18 mpteq12dv k=KsLSubSpDVecHkwfLFnlDVecHkw|ocHkwocHkwLKerDVecHkwf=LKerDVecHkwfocHkwLKerDVecHkwfs=sLSubSpDVecHKwfLFnlDVecHKw|ocHKwocHKwLKerDVecHKwf=LKerDVecHKwfocHKwLKerDVecHKwfs
20 4 19 mpteq12dv k=KwLHypksLSubSpDVecHkwfLFnlDVecHkw|ocHkwocHkwLKerDVecHkwf=LKerDVecHkwfocHkwLKerDVecHkwfs=wHsLSubSpDVecHKwfLFnlDVecHKw|ocHKwocHKwLKerDVecHKwf=LKerDVecHKwfocHKwLKerDVecHKwfs
21 df-mapd mapd=kVwLHypksLSubSpDVecHkwfLFnlDVecHkw|ocHkwocHkwLKerDVecHkwf=LKerDVecHkwfocHkwLKerDVecHkwfs
22 20 21 1 mptfvmpt KVmapdK=wHsLSubSpDVecHKwfLFnlDVecHKw|ocHKwocHKwLKerDVecHKwf=LKerDVecHKwfocHKwLKerDVecHKwfs
23 2 22 syl KXmapdK=wHsLSubSpDVecHKwfLFnlDVecHKw|ocHKwocHKwLKerDVecHKwf=LKerDVecHKwfocHKwLKerDVecHKwfs