| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpr |
|
| 2 |
1
|
oveq1d |
|
| 3 |
|
simplr |
|
| 4 |
|
idd |
|
| 5 |
4 1
|
jctird |
|
| 6 |
3 5
|
mtod |
|
| 7 |
6
|
neqned |
|
| 8 |
|
map0b |
|
| 9 |
7 8
|
syl |
|
| 10 |
2 9
|
eqtrd |
|
| 11 |
|
ovex |
|
| 12 |
11
|
0dom |
|
| 13 |
10 12
|
eqbrtrdi |
|
| 14 |
|
simpll |
|
| 15 |
|
reldom |
|
| 16 |
15
|
brrelex2i |
|
| 17 |
16
|
ad2antrr |
|
| 18 |
|
domeng |
|
| 19 |
17 18
|
syl |
|
| 20 |
14 19
|
mpbid |
|
| 21 |
|
enrefg |
|
| 22 |
21
|
ad2antlr |
|
| 23 |
|
simprrl |
|
| 24 |
|
mapen |
|
| 25 |
22 23 24
|
syl2anc |
|
| 26 |
|
ovexd |
|
| 27 |
|
ovexd |
|
| 28 |
|
simprl |
|
| 29 |
|
simplr |
|
| 30 |
16
|
ad2antrr |
|
| 31 |
30
|
difexd |
|
| 32 |
|
map0g |
|
| 33 |
|
simpl |
|
| 34 |
32 33
|
biimtrdi |
|
| 35 |
34
|
necon3d |
|
| 36 |
29 31 35
|
syl2anc |
|
| 37 |
28 36
|
mpd |
|
| 38 |
|
xpdom3 |
|
| 39 |
26 27 37 38
|
syl3anc |
|
| 40 |
|
vex |
|
| 41 |
40
|
a1i |
|
| 42 |
|
disjdif |
|
| 43 |
42
|
a1i |
|
| 44 |
|
mapunen |
|
| 45 |
41 31 29 43 44
|
syl31anc |
|
| 46 |
45
|
ensymd |
|
| 47 |
|
simprrr |
|
| 48 |
|
undif |
|
| 49 |
47 48
|
sylib |
|
| 50 |
49
|
oveq2d |
|
| 51 |
46 50
|
breqtrd |
|
| 52 |
|
domentr |
|
| 53 |
39 51 52
|
syl2anc |
|
| 54 |
|
endomtr |
|
| 55 |
25 53 54
|
syl2anc |
|
| 56 |
55
|
expr |
|
| 57 |
56
|
exlimdv |
|
| 58 |
20 57
|
mpd |
|
| 59 |
58
|
adantlr |
|
| 60 |
13 59
|
pm2.61dane |
|
| 61 |
60
|
an32s |
|
| 62 |
61
|
ex |
|
| 63 |
|
reldmmap |
|
| 64 |
63
|
ovprc1 |
|
| 65 |
64 12
|
eqbrtrdi |
|
| 66 |
62 65
|
pm2.61d1 |
|