Description: Order-preserving property of set exponentiation. Theorem 6L(d) of Enderton p. 149. (Contributed by NM, 23-Sep-2004) (Revised by Mario Carneiro, 30-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | mapdom2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | |
|
2 | 1 | oveq1d | |
3 | simplr | |
|
4 | idd | |
|
5 | 4 1 | jctird | |
6 | 3 5 | mtod | |
7 | 6 | neqned | |
8 | map0b | |
|
9 | 7 8 | syl | |
10 | 2 9 | eqtrd | |
11 | ovex | |
|
12 | 11 | 0dom | |
13 | 10 12 | eqbrtrdi | |
14 | simpll | |
|
15 | reldom | |
|
16 | 15 | brrelex2i | |
17 | 16 | ad2antrr | |
18 | domeng | |
|
19 | 17 18 | syl | |
20 | 14 19 | mpbid | |
21 | enrefg | |
|
22 | 21 | ad2antlr | |
23 | simprrl | |
|
24 | mapen | |
|
25 | 22 23 24 | syl2anc | |
26 | ovexd | |
|
27 | ovexd | |
|
28 | simprl | |
|
29 | simplr | |
|
30 | 16 | ad2antrr | |
31 | 30 | difexd | |
32 | map0g | |
|
33 | simpl | |
|
34 | 32 33 | syl6bi | |
35 | 34 | necon3d | |
36 | 29 31 35 | syl2anc | |
37 | 28 36 | mpd | |
38 | xpdom3 | |
|
39 | 26 27 37 38 | syl3anc | |
40 | vex | |
|
41 | 40 | a1i | |
42 | disjdif | |
|
43 | 42 | a1i | |
44 | mapunen | |
|
45 | 41 31 29 43 44 | syl31anc | |
46 | 45 | ensymd | |
47 | simprrr | |
|
48 | undif | |
|
49 | 47 48 | sylib | |
50 | 49 | oveq2d | |
51 | 46 50 | breqtrd | |
52 | domentr | |
|
53 | 39 51 52 | syl2anc | |
54 | endomtr | |
|
55 | 25 53 54 | syl2anc | |
56 | 55 | expr | |
57 | 56 | exlimdv | |
58 | 20 57 | mpd | |
59 | 58 | adantlr | |
60 | 13 59 | pm2.61dane | |
61 | 60 | an32s | |
62 | 61 | ex | |
63 | reldmmap | |
|
64 | 63 | ovprc1 | |
65 | 64 12 | eqbrtrdi | |
66 | 62 65 | pm2.61d1 | |