Metamath Proof Explorer


Theorem mapdom2

Description: Order-preserving property of set exponentiation. Theorem 6L(d) of Enderton p. 149. (Contributed by NM, 23-Sep-2004) (Revised by Mario Carneiro, 30-Apr-2015)

Ref Expression
Assertion mapdom2 AB¬A=C=CACB

Proof

Step Hyp Ref Expression
1 simpr ABCV¬A=C=C=C=
2 1 oveq1d ABCV¬A=C=C=CA=A
3 simplr ABCV¬A=C=C=¬A=C=
4 idd ABCV¬A=C=C=A=A=
5 4 1 jctird ABCV¬A=C=C=A=A=C=
6 3 5 mtod ABCV¬A=C=C=¬A=
7 6 neqned ABCV¬A=C=C=A
8 map0b AA=
9 7 8 syl ABCV¬A=C=C=A=
10 2 9 eqtrd ABCV¬A=C=C=CA=
11 ovex CBV
12 11 0dom CB
13 10 12 eqbrtrdi ABCV¬A=C=C=CACB
14 simpll ABCVCAB
15 reldom Rel
16 15 brrelex2i ABBV
17 16 ad2antrr ABCVCBV
18 domeng BVABxAxxB
19 17 18 syl ABCVCABxAxxB
20 14 19 mpbid ABCVCxAxxB
21 enrefg CVCC
22 21 ad2antlr ABCVCAxxBCC
23 simprrl ABCVCAxxBAx
24 mapen CCAxCACx
25 22 23 24 syl2anc ABCVCAxxBCACx
26 ovexd ABCVCAxxBCxV
27 ovexd ABCVCAxxBCBxV
28 simprl ABCVCAxxBC
29 simplr ABCVCAxxBCV
30 16 ad2antrr ABCVCAxxBBV
31 30 difexd ABCVCAxxBBxV
32 map0g CVBxVCBx=C=Bx
33 simpl C=BxC=
34 32 33 syl6bi CVBxVCBx=C=
35 34 necon3d CVBxVCCBx
36 29 31 35 syl2anc ABCVCAxxBCCBx
37 28 36 mpd ABCVCAxxBCBx
38 xpdom3 CxVCBxVCBxCxCx×CBx
39 26 27 37 38 syl3anc ABCVCAxxBCxCx×CBx
40 vex xV
41 40 a1i ABCVCAxxBxV
42 disjdif xBx=
43 42 a1i ABCVCAxxBxBx=
44 mapunen xVBxVCVxBx=CxBxCx×CBx
45 41 31 29 43 44 syl31anc ABCVCAxxBCxBxCx×CBx
46 45 ensymd ABCVCAxxBCx×CBxCxBx
47 simprrr ABCVCAxxBxB
48 undif xBxBx=B
49 47 48 sylib ABCVCAxxBxBx=B
50 49 oveq2d ABCVCAxxBCxBx=CB
51 46 50 breqtrd ABCVCAxxBCx×CBxCB
52 domentr CxCx×CBxCx×CBxCBCxCB
53 39 51 52 syl2anc ABCVCAxxBCxCB
54 endomtr CACxCxCBCACB
55 25 53 54 syl2anc ABCVCAxxBCACB
56 55 expr ABCVCAxxBCACB
57 56 exlimdv ABCVCxAxxBCACB
58 20 57 mpd ABCVCCACB
59 58 adantlr ABCV¬A=C=CCACB
60 13 59 pm2.61dane ABCV¬A=C=CACB
61 60 an32s AB¬A=C=CVCACB
62 61 ex AB¬A=C=CVCACB
63 reldmmap Reldom𝑚
64 63 ovprc1 ¬CVCA=
65 64 12 eqbrtrdi ¬CVCACB
66 62 65 pm2.61d1 AB¬A=C=CACB