Metamath Proof Explorer


Theorem matring

Description: Existence of the matrix ring, see also the statement in Lang p. 504: "For a given integer n > 0 the set of square n x n matrices form a ring." (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypothesis matassa.a A=NMatR
Assertion matring NFinRRingARing

Proof

Step Hyp Ref Expression
1 matassa.a A=NMatR
2 eqid BaseR=BaseR
3 1 2 matbas2 NFinRRingBaseRN×N=BaseA
4 eqidd NFinRRing+A=+A
5 eqid RmaMulNNN=RmaMulNNN
6 1 5 matmulr NFinRRingRmaMulNNN=A
7 1 matgrp NFinRRingAGrp
8 simp1r NFinRRingxBaseRN×NyBaseRN×NRRing
9 simp1l NFinRRingxBaseRN×NyBaseRN×NNFin
10 simp2 NFinRRingxBaseRN×NyBaseRN×NxBaseRN×N
11 simp3 NFinRRingxBaseRN×NyBaseRN×NyBaseRN×N
12 2 8 5 9 9 9 10 11 mamucl NFinRRingxBaseRN×NyBaseRN×NxRmaMulNNNyBaseRN×N
13 simplr NFinRRingxBaseRN×NyBaseRN×NzBaseRN×NRRing
14 simpll NFinRRingxBaseRN×NyBaseRN×NzBaseRN×NNFin
15 simpr1 NFinRRingxBaseRN×NyBaseRN×NzBaseRN×NxBaseRN×N
16 simpr2 NFinRRingxBaseRN×NyBaseRN×NzBaseRN×NyBaseRN×N
17 simpr3 NFinRRingxBaseRN×NyBaseRN×NzBaseRN×NzBaseRN×N
18 2 13 14 14 14 14 15 16 17 5 5 5 5 mamuass NFinRRingxBaseRN×NyBaseRN×NzBaseRN×NxRmaMulNNNyRmaMulNNNz=xRmaMulNNNyRmaMulNNNz
19 eqid +R=+R
20 2 13 5 14 14 14 19 15 16 17 mamudir NFinRRingxBaseRN×NyBaseRN×NzBaseRN×NxRmaMulNNNy+Rfz=xRmaMulNNNy+RfxRmaMulNNNz
21 3 adantr NFinRRingxBaseRN×NyBaseRN×NzBaseRN×NBaseRN×N=BaseA
22 16 21 eleqtrd NFinRRingxBaseRN×NyBaseRN×NzBaseRN×NyBaseA
23 17 21 eleqtrd NFinRRingxBaseRN×NyBaseRN×NzBaseRN×NzBaseA
24 eqid BaseA=BaseA
25 eqid +A=+A
26 1 24 25 19 matplusg2 yBaseAzBaseAy+Az=y+Rfz
27 22 23 26 syl2anc NFinRRingxBaseRN×NyBaseRN×NzBaseRN×Ny+Az=y+Rfz
28 27 oveq2d NFinRRingxBaseRN×NyBaseRN×NzBaseRN×NxRmaMulNNNy+Az=xRmaMulNNNy+Rfz
29 2 13 5 14 14 14 15 16 mamucl NFinRRingxBaseRN×NyBaseRN×NzBaseRN×NxRmaMulNNNyBaseRN×N
30 29 21 eleqtrd NFinRRingxBaseRN×NyBaseRN×NzBaseRN×NxRmaMulNNNyBaseA
31 2 13 5 14 14 14 15 17 mamucl NFinRRingxBaseRN×NyBaseRN×NzBaseRN×NxRmaMulNNNzBaseRN×N
32 31 21 eleqtrd NFinRRingxBaseRN×NyBaseRN×NzBaseRN×NxRmaMulNNNzBaseA
33 1 24 25 19 matplusg2 xRmaMulNNNyBaseAxRmaMulNNNzBaseAxRmaMulNNNy+AxRmaMulNNNz=xRmaMulNNNy+RfxRmaMulNNNz
34 30 32 33 syl2anc NFinRRingxBaseRN×NyBaseRN×NzBaseRN×NxRmaMulNNNy+AxRmaMulNNNz=xRmaMulNNNy+RfxRmaMulNNNz
35 20 28 34 3eqtr4d NFinRRingxBaseRN×NyBaseRN×NzBaseRN×NxRmaMulNNNy+Az=xRmaMulNNNy+AxRmaMulNNNz
36 2 13 5 14 14 14 19 15 16 17 mamudi NFinRRingxBaseRN×NyBaseRN×NzBaseRN×Nx+RfyRmaMulNNNz=xRmaMulNNNz+RfyRmaMulNNNz
37 15 21 eleqtrd NFinRRingxBaseRN×NyBaseRN×NzBaseRN×NxBaseA
38 1 24 25 19 matplusg2 xBaseAyBaseAx+Ay=x+Rfy
39 37 22 38 syl2anc NFinRRingxBaseRN×NyBaseRN×NzBaseRN×Nx+Ay=x+Rfy
40 39 oveq1d NFinRRingxBaseRN×NyBaseRN×NzBaseRN×Nx+AyRmaMulNNNz=x+RfyRmaMulNNNz
41 2 13 5 14 14 14 16 17 mamucl NFinRRingxBaseRN×NyBaseRN×NzBaseRN×NyRmaMulNNNzBaseRN×N
42 41 21 eleqtrd NFinRRingxBaseRN×NyBaseRN×NzBaseRN×NyRmaMulNNNzBaseA
43 1 24 25 19 matplusg2 xRmaMulNNNzBaseAyRmaMulNNNzBaseAxRmaMulNNNz+AyRmaMulNNNz=xRmaMulNNNz+RfyRmaMulNNNz
44 32 42 43 syl2anc NFinRRingxBaseRN×NyBaseRN×NzBaseRN×NxRmaMulNNNz+AyRmaMulNNNz=xRmaMulNNNz+RfyRmaMulNNNz
45 36 40 44 3eqtr4d NFinRRingxBaseRN×NyBaseRN×NzBaseRN×Nx+AyRmaMulNNNz=xRmaMulNNNz+AyRmaMulNNNz
46 simpr NFinRRingRRing
47 eqid 1R=1R
48 eqid 0R=0R
49 eqid aN,bNifa=b1R0R=aN,bNifa=b1R0R
50 simpl NFinRRingNFin
51 2 46 47 48 49 50 mamumat1cl NFinRRingaN,bNifa=b1R0RBaseRN×N
52 simplr NFinRRingxBaseRN×NRRing
53 simpll NFinRRingxBaseRN×NNFin
54 simpr NFinRRingxBaseRN×NxBaseRN×N
55 2 52 47 48 49 53 53 5 54 mamulid NFinRRingxBaseRN×NaN,bNifa=b1R0RRmaMulNNNx=x
56 2 52 47 48 49 53 53 5 54 mamurid NFinRRingxBaseRN×NxRmaMulNNNaN,bNifa=b1R0R=x
57 3 4 6 7 12 18 35 45 51 55 56 isringd NFinRRingARing