| Step |
Hyp |
Ref |
Expression |
| 1 |
|
matsc.a |
|
| 2 |
|
matsc.k |
|
| 3 |
|
matsc.m |
|
| 4 |
|
matsc.z |
|
| 5 |
|
simp3 |
|
| 6 |
|
3simpa |
|
| 7 |
1
|
matring |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
8 9
|
ringidcl |
|
| 11 |
6 7 10
|
3syl |
|
| 12 |
|
eqid |
|
| 13 |
|
eqid |
|
| 14 |
1 8 2 3 12 13
|
matvsca2 |
|
| 15 |
5 11 14
|
syl2anc |
|
| 16 |
|
simp1 |
|
| 17 |
|
simp13 |
|
| 18 |
|
fvex |
|
| 19 |
4
|
fvexi |
|
| 20 |
18 19
|
ifex |
|
| 21 |
20
|
a1i |
|
| 22 |
|
fconstmpo |
|
| 23 |
22
|
a1i |
|
| 24 |
|
eqid |
|
| 25 |
1 24 4
|
mat1 |
|
| 26 |
25
|
3adant3 |
|
| 27 |
16 16 17 21 23 26
|
offval22 |
|
| 28 |
|
ovif2 |
|
| 29 |
2 12 24
|
ringridm |
|
| 30 |
29
|
3adant1 |
|
| 31 |
2 12 4
|
ringrz |
|
| 32 |
31
|
3adant1 |
|
| 33 |
30 32
|
ifeq12d |
|
| 34 |
28 33
|
eqtrid |
|
| 35 |
34
|
mpoeq3dv |
|
| 36 |
15 27 35
|
3eqtrd |
|