Metamath Proof Explorer


Theorem matvscacell

Description: Scalar multiplication in the matrix ring is cell-wise. (Contributed by AV, 7-Aug-2019)

Ref Expression
Hypotheses matplusgcell.a A=NMatR
matplusgcell.b B=BaseA
matvscacell.k K=BaseR
matvscacell.v ·˙=A
matvscacell.t ×˙=R
Assertion matvscacell RRingXKYBINJNIX·˙YJ=X×˙IYJ

Proof

Step Hyp Ref Expression
1 matplusgcell.a A=NMatR
2 matplusgcell.b B=BaseA
3 matvscacell.k K=BaseR
4 matvscacell.v ·˙=A
5 matvscacell.t ×˙=R
6 eqid N×N=N×N
7 1 2 3 4 5 6 matvsca2 XKYBX·˙Y=N×N×X×˙fY
8 7 oveqd XKYBIX·˙YJ=IN×N×X×˙fYJ
9 8 3ad2ant2 RRingXKYBINJNIX·˙YJ=IN×N×X×˙fYJ
10 df-ov IN×N×X×˙fYJ=N×N×X×˙fYIJ
11 10 a1i RRingXKYBINJNIN×N×X×˙fYJ=N×N×X×˙fYIJ
12 opelxpi INJNIJN×N
13 12 3ad2ant3 RRingXKYBINJNIJN×N
14 1 2 matrcl YBNFinRV
15 14 simpld YBNFin
16 15 adantl XKYBNFin
17 16 3ad2ant2 RRingXKYBINJNNFin
18 xpfi NFinNFinN×NFin
19 17 17 18 syl2anc RRingXKYBINJNN×NFin
20 simp2l RRingXKYBINJNXK
21 2 eleq2i YBYBaseA
22 21 biimpi YBYBaseA
23 22 adantl XKYBYBaseA
24 23 3ad2ant2 RRingXKYBINJNYBaseA
25 simp1 RRingXKYBINJNRRing
26 eqid BaseR=BaseR
27 1 26 matbas2 NFinRRingBaseRN×N=BaseA
28 17 25 27 syl2anc RRingXKYBINJNBaseRN×N=BaseA
29 24 28 eleqtrrd RRingXKYBINJNYBaseRN×N
30 elmapfn YBaseRN×NYFnN×N
31 29 30 syl RRingXKYBINJNYFnN×N
32 df-ov IYJ=YIJ
33 32 eqcomi YIJ=IYJ
34 33 a1i RRingXKYBINJNIJN×NYIJ=IYJ
35 19 20 31 34 ofc1 RRingXKYBINJNIJN×NN×N×X×˙fYIJ=X×˙IYJ
36 13 35 mpdan RRingXKYBINJNN×N×X×˙fYIJ=X×˙IYJ
37 9 11 36 3eqtrd RRingXKYBINJNIX·˙YJ=X×˙IYJ