Description: Lemma for mbfeqa . (Contributed by Mario Carneiro, 2-Sep-2014) (Proof shortened by AV, 19-Aug-2022)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mbfeqa.1 | |
|
mbfeqa.2 | |
||
mbfeqa.3 | |
||
mbfeqalem.4 | |
||
mbfeqalem.5 | |
||
Assertion | mbfeqalem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mbfeqa.1 | |
|
2 | mbfeqa.2 | |
|
3 | mbfeqa.3 | |
|
4 | mbfeqalem.4 | |
|
5 | mbfeqalem.5 | |
|
6 | inundif | |
|
7 | incom | |
|
8 | dfin4 | |
|
9 | 7 8 | eqtri | |
10 | id | |
|
11 | 1 2 3 4 5 | mbfeqalem1 | |
12 | difmbl | |
|
13 | 10 11 12 | syl2anr | |
14 | 9 13 | eqeltrid | |
15 | 3 | eqcomd | |
16 | 1 2 15 5 4 | mbfeqalem1 | |
17 | 16 | adantr | |
18 | unmbl | |
|
19 | 14 17 18 | syl2anc | |
20 | 6 19 | eqeltrrid | |
21 | inundif | |
|
22 | incom | |
|
23 | dfin4 | |
|
24 | 22 23 | eqtri | |
25 | id | |
|
26 | difmbl | |
|
27 | 25 16 26 | syl2anr | |
28 | 24 27 | eqeltrid | |
29 | 11 | adantr | |
30 | unmbl | |
|
31 | 28 29 30 | syl2anc | |
32 | 21 31 | eqeltrrid | |
33 | 20 32 | impbida | |
34 | 33 | ralbidv | |
35 | 4 | fmpttd | |
36 | ismbf | |
|
37 | 35 36 | syl | |
38 | 5 | fmpttd | |
39 | ismbf | |
|
40 | 38 39 | syl | |
41 | 34 37 40 | 3bitr4d | |