Metamath Proof Explorer


Theorem mbfeqalem2

Description: Lemma for mbfeqa . (Contributed by Mario Carneiro, 2-Sep-2014) (Proof shortened by AV, 19-Aug-2022)

Ref Expression
Hypotheses mbfeqa.1 φA
mbfeqa.2 φvol*A=0
mbfeqa.3 φxBAC=D
mbfeqalem.4 φxBC
mbfeqalem.5 φxBD
Assertion mbfeqalem2 φxBCMblFnxBDMblFn

Proof

Step Hyp Ref Expression
1 mbfeqa.1 φA
2 mbfeqa.2 φvol*A=0
3 mbfeqa.3 φxBAC=D
4 mbfeqalem.4 φxBC
5 mbfeqalem.5 φxBD
6 inundif xBD-1yxBC-1yxBD-1yxBC-1y=xBD-1y
7 incom xBD-1yxBC-1y=xBC-1yxBD-1y
8 dfin4 xBC-1yxBD-1y=xBC-1yxBC-1yxBD-1y
9 7 8 eqtri xBD-1yxBC-1y=xBC-1yxBC-1yxBD-1y
10 id xBC-1ydomvolxBC-1ydomvol
11 1 2 3 4 5 mbfeqalem1 φxBC-1yxBD-1ydomvol
12 difmbl xBC-1ydomvolxBC-1yxBD-1ydomvolxBC-1yxBC-1yxBD-1ydomvol
13 10 11 12 syl2anr φxBC-1ydomvolxBC-1yxBC-1yxBD-1ydomvol
14 9 13 eqeltrid φxBC-1ydomvolxBD-1yxBC-1ydomvol
15 3 eqcomd φxBAD=C
16 1 2 15 5 4 mbfeqalem1 φxBD-1yxBC-1ydomvol
17 16 adantr φxBC-1ydomvolxBD-1yxBC-1ydomvol
18 unmbl xBD-1yxBC-1ydomvolxBD-1yxBC-1ydomvolxBD-1yxBC-1yxBD-1yxBC-1ydomvol
19 14 17 18 syl2anc φxBC-1ydomvolxBD-1yxBC-1yxBD-1yxBC-1ydomvol
20 6 19 eqeltrrid φxBC-1ydomvolxBD-1ydomvol
21 inundif xBC-1yxBD-1yxBC-1yxBD-1y=xBC-1y
22 incom xBC-1yxBD-1y=xBD-1yxBC-1y
23 dfin4 xBD-1yxBC-1y=xBD-1yxBD-1yxBC-1y
24 22 23 eqtri xBC-1yxBD-1y=xBD-1yxBD-1yxBC-1y
25 id xBD-1ydomvolxBD-1ydomvol
26 difmbl xBD-1ydomvolxBD-1yxBC-1ydomvolxBD-1yxBD-1yxBC-1ydomvol
27 25 16 26 syl2anr φxBD-1ydomvolxBD-1yxBD-1yxBC-1ydomvol
28 24 27 eqeltrid φxBD-1ydomvolxBC-1yxBD-1ydomvol
29 11 adantr φxBD-1ydomvolxBC-1yxBD-1ydomvol
30 unmbl xBC-1yxBD-1ydomvolxBC-1yxBD-1ydomvolxBC-1yxBD-1yxBC-1yxBD-1ydomvol
31 28 29 30 syl2anc φxBD-1ydomvolxBC-1yxBD-1yxBC-1yxBD-1ydomvol
32 21 31 eqeltrrid φxBD-1ydomvolxBC-1ydomvol
33 20 32 impbida φxBC-1ydomvolxBD-1ydomvol
34 33 ralbidv φyran.xBC-1ydomvolyran.xBD-1ydomvol
35 4 fmpttd φxBC:B
36 ismbf xBC:BxBCMblFnyran.xBC-1ydomvol
37 35 36 syl φxBCMblFnyran.xBC-1ydomvol
38 5 fmpttd φxBD:B
39 ismbf xBD:BxBDMblFnyran.xBD-1ydomvol
40 38 39 syl φxBDMblFnyran.xBD-1ydomvol
41 34 37 40 3bitr4d φxBCMblFnxBDMblFn