Description: Lemma for mdetuni . (Contributed by SO, 15-Jul-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mdetuni.a | |
|
mdetuni.b | |
||
mdetuni.k | |
||
mdetuni.0g | |
||
mdetuni.1r | |
||
mdetuni.pg | |
||
mdetuni.tg | |
||
mdetuni.n | |
||
mdetuni.r | |
||
mdetuni.ff | |
||
mdetuni.al | |
||
mdetuni.li | |
||
mdetuni.sc | |
||
Assertion | mdetunilem4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdetuni.a | |
|
2 | mdetuni.b | |
|
3 | mdetuni.k | |
|
4 | mdetuni.0g | |
|
5 | mdetuni.1r | |
|
6 | mdetuni.pg | |
|
7 | mdetuni.tg | |
|
8 | mdetuni.n | |
|
9 | mdetuni.r | |
|
10 | mdetuni.ff | |
|
11 | mdetuni.al | |
|
12 | mdetuni.li | |
|
13 | mdetuni.sc | |
|
14 | simp32 | |
|
15 | simp33 | |
|
16 | simp1 | |
|
17 | simp23 | |
|
18 | simp3 | |
|
19 | simp21 | |
|
20 | simp22 | |
|
21 | 13 | 3ad2ant1 | |
22 | reseq1 | |
|
23 | 22 | eqeq1d | |
24 | reseq1 | |
|
25 | 24 | eqeq1d | |
26 | 23 25 | anbi12d | |
27 | fveqeq2 | |
|
28 | 26 27 | imbi12d | |
29 | 28 | 2ralbidv | |
30 | sneq | |
|
31 | 30 | xpeq2d | |
32 | 31 | oveq1d | |
33 | 32 | eqeq2d | |
34 | 33 | anbi1d | |
35 | oveq1 | |
|
36 | 35 | eqeq2d | |
37 | 34 36 | imbi12d | |
38 | 37 | 2ralbidv | |
39 | 29 38 | rspc2va | |
40 | 19 20 21 39 | syl21anc | |
41 | reseq1 | |
|
42 | 41 | oveq2d | |
43 | 42 | eqeq2d | |
44 | reseq1 | |
|
45 | 44 | eqeq2d | |
46 | 43 45 | anbi12d | |
47 | fveq2 | |
|
48 | 47 | oveq2d | |
49 | 48 | eqeq2d | |
50 | 46 49 | imbi12d | |
51 | sneq | |
|
52 | 51 | xpeq1d | |
53 | 52 | reseq2d | |
54 | 52 | xpeq1d | |
55 | 52 | reseq2d | |
56 | 54 55 | oveq12d | |
57 | 53 56 | eqeq12d | |
58 | 51 | difeq2d | |
59 | 58 | xpeq1d | |
60 | 59 | reseq2d | |
61 | 59 | reseq2d | |
62 | 60 61 | eqeq12d | |
63 | 57 62 | anbi12d | |
64 | 63 | imbi1d | |
65 | 50 64 | rspc2va | |
66 | 17 18 40 65 | syl21anc | |
67 | 16 66 | syl3an3 | |
68 | 14 15 67 | mp2and | |