Metamath Proof Explorer


Theorem mdetunilem4

Description: Lemma for mdetuni . (Contributed by SO, 15-Jul-2018)

Ref Expression
Hypotheses mdetuni.a A=NMatR
mdetuni.b B=BaseA
mdetuni.k K=BaseR
mdetuni.0g 0˙=0R
mdetuni.1r 1˙=1R
mdetuni.pg +˙=+R
mdetuni.tg ·˙=R
mdetuni.n φNFin
mdetuni.r φRRing
mdetuni.ff φD:BK
mdetuni.al φxByNzNyzwNyxw=zxwDx=0˙
mdetuni.li φxByBzBwNxw×N=yw×N+˙fzw×NxNw×N=yNw×NxNw×N=zNw×NDx=Dy+˙Dz
mdetuni.sc φxByKzBwNxw×N=w×N×y·˙fzw×NxNw×N=zNw×NDx=y·˙Dz
Assertion mdetunilem4 φEBFKGBHNEH×N=H×N×F·˙fGH×NENH×N=GNH×NDE=F·˙DG

Proof

Step Hyp Ref Expression
1 mdetuni.a A=NMatR
2 mdetuni.b B=BaseA
3 mdetuni.k K=BaseR
4 mdetuni.0g 0˙=0R
5 mdetuni.1r 1˙=1R
6 mdetuni.pg +˙=+R
7 mdetuni.tg ·˙=R
8 mdetuni.n φNFin
9 mdetuni.r φRRing
10 mdetuni.ff φD:BK
11 mdetuni.al φxByNzNyzwNyxw=zxwDx=0˙
12 mdetuni.li φxByBzBwNxw×N=yw×N+˙fzw×NxNw×N=yNw×NxNw×N=zNw×NDx=Dy+˙Dz
13 mdetuni.sc φxByKzBwNxw×N=w×N×y·˙fzw×NxNw×N=zNw×NDx=y·˙Dz
14 simp32 φEBFKGBHNEH×N=H×N×F·˙fGH×NENH×N=GNH×NEH×N=H×N×F·˙fGH×N
15 simp33 φEBFKGBHNEH×N=H×N×F·˙fGH×NENH×N=GNH×NENH×N=GNH×N
16 simp1 HNEH×N=H×N×F·˙fGH×NENH×N=GNH×NHN
17 simp23 φEBFKGBHNGB
18 simp3 φEBFKGBHNHN
19 simp21 φEBFKGBHNEB
20 simp22 φEBFKGBHNFK
21 13 3ad2ant1 φEBFKGBHNxByKzBwNxw×N=w×N×y·˙fzw×NxNw×N=zNw×NDx=y·˙Dz
22 reseq1 x=Exw×N=Ew×N
23 22 eqeq1d x=Exw×N=w×N×y·˙fzw×NEw×N=w×N×y·˙fzw×N
24 reseq1 x=ExNw×N=ENw×N
25 24 eqeq1d x=ExNw×N=zNw×NENw×N=zNw×N
26 23 25 anbi12d x=Exw×N=w×N×y·˙fzw×NxNw×N=zNw×NEw×N=w×N×y·˙fzw×NENw×N=zNw×N
27 fveqeq2 x=EDx=y·˙DzDE=y·˙Dz
28 26 27 imbi12d x=Exw×N=w×N×y·˙fzw×NxNw×N=zNw×NDx=y·˙DzEw×N=w×N×y·˙fzw×NENw×N=zNw×NDE=y·˙Dz
29 28 2ralbidv x=EzBwNxw×N=w×N×y·˙fzw×NxNw×N=zNw×NDx=y·˙DzzBwNEw×N=w×N×y·˙fzw×NENw×N=zNw×NDE=y·˙Dz
30 sneq y=Fy=F
31 30 xpeq2d y=Fw×N×y=w×N×F
32 31 oveq1d y=Fw×N×y·˙fzw×N=w×N×F·˙fzw×N
33 32 eqeq2d y=FEw×N=w×N×y·˙fzw×NEw×N=w×N×F·˙fzw×N
34 33 anbi1d y=FEw×N=w×N×y·˙fzw×NENw×N=zNw×NEw×N=w×N×F·˙fzw×NENw×N=zNw×N
35 oveq1 y=Fy·˙Dz=F·˙Dz
36 35 eqeq2d y=FDE=y·˙DzDE=F·˙Dz
37 34 36 imbi12d y=FEw×N=w×N×y·˙fzw×NENw×N=zNw×NDE=y·˙DzEw×N=w×N×F·˙fzw×NENw×N=zNw×NDE=F·˙Dz
38 37 2ralbidv y=FzBwNEw×N=w×N×y·˙fzw×NENw×N=zNw×NDE=y·˙DzzBwNEw×N=w×N×F·˙fzw×NENw×N=zNw×NDE=F·˙Dz
39 29 38 rspc2va EBFKxByKzBwNxw×N=w×N×y·˙fzw×NxNw×N=zNw×NDx=y·˙DzzBwNEw×N=w×N×F·˙fzw×NENw×N=zNw×NDE=F·˙Dz
40 19 20 21 39 syl21anc φEBFKGBHNzBwNEw×N=w×N×F·˙fzw×NENw×N=zNw×NDE=F·˙Dz
41 reseq1 z=Gzw×N=Gw×N
42 41 oveq2d z=Gw×N×F·˙fzw×N=w×N×F·˙fGw×N
43 42 eqeq2d z=GEw×N=w×N×F·˙fzw×NEw×N=w×N×F·˙fGw×N
44 reseq1 z=GzNw×N=GNw×N
45 44 eqeq2d z=GENw×N=zNw×NENw×N=GNw×N
46 43 45 anbi12d z=GEw×N=w×N×F·˙fzw×NENw×N=zNw×NEw×N=w×N×F·˙fGw×NENw×N=GNw×N
47 fveq2 z=GDz=DG
48 47 oveq2d z=GF·˙Dz=F·˙DG
49 48 eqeq2d z=GDE=F·˙DzDE=F·˙DG
50 46 49 imbi12d z=GEw×N=w×N×F·˙fzw×NENw×N=zNw×NDE=F·˙DzEw×N=w×N×F·˙fGw×NENw×N=GNw×NDE=F·˙DG
51 sneq w=Hw=H
52 51 xpeq1d w=Hw×N=H×N
53 52 reseq2d w=HEw×N=EH×N
54 52 xpeq1d w=Hw×N×F=H×N×F
55 52 reseq2d w=HGw×N=GH×N
56 54 55 oveq12d w=Hw×N×F·˙fGw×N=H×N×F·˙fGH×N
57 53 56 eqeq12d w=HEw×N=w×N×F·˙fGw×NEH×N=H×N×F·˙fGH×N
58 51 difeq2d w=HNw=NH
59 58 xpeq1d w=HNw×N=NH×N
60 59 reseq2d w=HENw×N=ENH×N
61 59 reseq2d w=HGNw×N=GNH×N
62 60 61 eqeq12d w=HENw×N=GNw×NENH×N=GNH×N
63 57 62 anbi12d w=HEw×N=w×N×F·˙fGw×NENw×N=GNw×NEH×N=H×N×F·˙fGH×NENH×N=GNH×N
64 63 imbi1d w=HEw×N=w×N×F·˙fGw×NENw×N=GNw×NDE=F·˙DGEH×N=H×N×F·˙fGH×NENH×N=GNH×NDE=F·˙DG
65 50 64 rspc2va GBHNzBwNEw×N=w×N×F·˙fzw×NENw×N=zNw×NDE=F·˙DzEH×N=H×N×F·˙fGH×NENH×N=GNH×NDE=F·˙DG
66 17 18 40 65 syl21anc φEBFKGBHNEH×N=H×N×F·˙fGH×NENH×N=GNH×NDE=F·˙DG
67 16 66 syl3an3 φEBFKGBHNEH×N=H×N×F·˙fGH×NENH×N=GNH×NEH×N=H×N×F·˙fGH×NENH×N=GNH×NDE=F·˙DG
68 14 15 67 mp2and φEBFKGBHNEH×N=H×N×F·˙fGH×NENH×N=GNH×NDE=F·˙DG