Metamath Proof Explorer


Theorem mdslj2i

Description: Meet preservation of the reverse mapping between the two sublattices in Lemma 1.3 of MaedaMaeda p. 2. (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses mdslle1.1 AC
mdslle1.2 BC
mdslle1.3 CC
mdslle1.4 DC
Assertion mdslj2i A𝑀BB𝑀*AABCDCDBCDA=CADA

Proof

Step Hyp Ref Expression
1 mdslle1.1 AC
2 mdslle1.2 BC
3 mdslle1.3 CC
4 mdslle1.4 DC
5 3 4 1 lejdiri CDACADA
6 5 a1i A𝑀BB𝑀*AABCDCDBCDACADA
7 ssin ABCABDABCD
8 7 bicomi ABCDABCABD
9 3 4 2 chlubi CBDBCDB
10 9 bicomi CDBCBDB
11 8 10 anbi12i ABCDCDBABCABDCBDB
12 simpr A𝑀BB𝑀*AB𝑀*A
13 1 3 chub2i ACA
14 1 4 chub2i ADA
15 13 14 ssini ACADA
16 15 a1i ABCABDACADA
17 3 2 1 chlej1i CBCABA
18 2 1 chjcomi BA=AB
19 17 18 sseqtrdi CBCAAB
20 ssinss1 CAABCADAAB
21 19 20 syl CBCADAAB
22 21 adantr CBDBCADAAB
23 3 1 chjcli CAC
24 4 1 chjcli DAC
25 23 24 chincli CADAC
26 1 2 25 3pm3.2i ACBCCADAC
27 dmdsl3 ACBCCADACB𝑀*AACADACADAABCADABA=CADA
28 26 27 mpan B𝑀*AACADACADAABCADABA=CADA
29 12 16 22 28 syl3an A𝑀BB𝑀*AABCABDCBDBCADABA=CADA
30 inss1 CADACA
31 ssrin CADACACADABCAB
32 30 31 ax-mp CADABCAB
33 simpl A𝑀BB𝑀*AA𝑀B
34 simpl ABCABDABC
35 simpl CBDBCB
36 1 2 3 3pm3.2i ACBCCC
37 mdsl3 ACBCCCA𝑀BABCCBCAB=C
38 36 37 mpan A𝑀BABCCBCAB=C
39 33 34 35 38 syl3an A𝑀BB𝑀*AABCABDCBDBCAB=C
40 32 39 sseqtrid A𝑀BB𝑀*AABCABDCBDBCADABC
41 inss2 CADADA
42 ssrin CADADACADABDAB
43 41 42 ax-mp CADABDAB
44 simpr ABCABDABD
45 simpr CBDBDB
46 1 2 4 3pm3.2i ACBCDC
47 mdsl3 ACBCDCA𝑀BABDDBDAB=D
48 46 47 mpan A𝑀BABDDBDAB=D
49 33 44 45 48 syl3an A𝑀BB𝑀*AABCABDCBDBDAB=D
50 43 49 sseqtrid A𝑀BB𝑀*AABCABDCBDBCADABD
51 40 50 ssind A𝑀BB𝑀*AABCABDCBDBCADABCD
52 25 2 chincli CADABC
53 3 4 chincli CDC
54 52 53 1 chlej1i CADABCDCADABACDA
55 51 54 syl A𝑀BB𝑀*AABCABDCBDBCADABACDA
56 29 55 eqsstrrd A𝑀BB𝑀*AABCABDCBDBCADACDA
57 56 3expb A𝑀BB𝑀*AABCABDCBDBCADACDA
58 11 57 sylan2b A𝑀BB𝑀*AABCDCDBCADACDA
59 6 58 eqssd A𝑀BB𝑀*AABCDCDBCDA=CADA