Metamath Proof Explorer


Theorem metcnp

Description: Two ways to say a mapping from metric C to metric D is continuous at point P . (Contributed by NM, 11-May-2007) (Revised by Mario Carneiro, 28-Aug-2015)

Ref Expression
Hypotheses metcn.2 J=MetOpenC
metcn.4 K=MetOpenD
Assertion metcnp C∞MetXD∞MetYPXFJCnPKPF:XYy+z+wXPCw<zFPDFw<y

Proof

Step Hyp Ref Expression
1 metcn.2 J=MetOpenC
2 metcn.4 K=MetOpenD
3 1 2 metcnp3 C∞MetXD∞MetYPXFJCnPKPF:XYy+z+FPballCzFPballDy
4 ffun F:XYFunF
5 4 ad2antlr C∞MetXD∞MetYPXF:XYy+z+FunF
6 simpll1 C∞MetXD∞MetYPXF:XYy+z+C∞MetX
7 simpll3 C∞MetXD∞MetYPXF:XYy+z+PX
8 rpxr z+z*
9 8 ad2antll C∞MetXD∞MetYPXF:XYy+z+z*
10 blssm C∞MetXPXz*PballCzX
11 6 7 9 10 syl3anc C∞MetXD∞MetYPXF:XYy+z+PballCzX
12 fdm F:XYdomF=X
13 12 ad2antlr C∞MetXD∞MetYPXF:XYy+z+domF=X
14 11 13 sseqtrrd C∞MetXD∞MetYPXF:XYy+z+PballCzdomF
15 funimass4 FunFPballCzdomFFPballCzFPballDywPballCzFwFPballDy
16 5 14 15 syl2anc C∞MetXD∞MetYPXF:XYy+z+FPballCzFPballDywPballCzFwFPballDy
17 elbl C∞MetXPXz*wPballCzwXPCw<z
18 6 7 9 17 syl3anc C∞MetXD∞MetYPXF:XYy+z+wPballCzwXPCw<z
19 18 imbi1d C∞MetXD∞MetYPXF:XYy+z+wPballCzFwFPballDywXPCw<zFwFPballDy
20 impexp wXPCw<zFwFPballDywXPCw<zFwFPballDy
21 simpl2 C∞MetXD∞MetYPXF:XYD∞MetY
22 21 ad2antrr C∞MetXD∞MetYPXF:XYy+z+wXD∞MetY
23 simplrl C∞MetXD∞MetYPXF:XYy+z+wXy+
24 23 rpxrd C∞MetXD∞MetYPXF:XYy+z+wXy*
25 simpllr C∞MetXD∞MetYPXF:XYy+z+wXF:XY
26 7 adantr C∞MetXD∞MetYPXF:XYy+z+wXPX
27 25 26 ffvelcdmd C∞MetXD∞MetYPXF:XYy+z+wXFPY
28 simplr C∞MetXD∞MetYPXF:XYy+z+F:XY
29 28 ffvelcdmda C∞MetXD∞MetYPXF:XYy+z+wXFwY
30 elbl2 D∞MetYy*FPYFwYFwFPballDyFPDFw<y
31 22 24 27 29 30 syl22anc C∞MetXD∞MetYPXF:XYy+z+wXFwFPballDyFPDFw<y
32 31 imbi2d C∞MetXD∞MetYPXF:XYy+z+wXPCw<zFwFPballDyPCw<zFPDFw<y
33 32 pm5.74da C∞MetXD∞MetYPXF:XYy+z+wXPCw<zFwFPballDywXPCw<zFPDFw<y
34 20 33 bitrid C∞MetXD∞MetYPXF:XYy+z+wXPCw<zFwFPballDywXPCw<zFPDFw<y
35 19 34 bitrd C∞MetXD∞MetYPXF:XYy+z+wPballCzFwFPballDywXPCw<zFPDFw<y
36 35 ralbidv2 C∞MetXD∞MetYPXF:XYy+z+wPballCzFwFPballDywXPCw<zFPDFw<y
37 16 36 bitrd C∞MetXD∞MetYPXF:XYy+z+FPballCzFPballDywXPCw<zFPDFw<y
38 37 anassrs C∞MetXD∞MetYPXF:XYy+z+FPballCzFPballDywXPCw<zFPDFw<y
39 38 rexbidva C∞MetXD∞MetYPXF:XYy+z+FPballCzFPballDyz+wXPCw<zFPDFw<y
40 39 ralbidva C∞MetXD∞MetYPXF:XYy+z+FPballCzFPballDyy+z+wXPCw<zFPDFw<y
41 40 pm5.32da C∞MetXD∞MetYPXF:XYy+z+FPballCzFPballDyF:XYy+z+wXPCw<zFPDFw<y
42 3 41 bitrd C∞MetXD∞MetYPXFJCnPKPF:XYy+z+wXPCw<zFPDFw<y