Step |
Hyp |
Ref |
Expression |
1 |
|
metcn.2 |
|
2 |
|
metcn.4 |
|
3 |
1
|
mopntopon |
|
4 |
3
|
3ad2ant1 |
|
5 |
2
|
mopnval |
|
6 |
5
|
3ad2ant2 |
|
7 |
2
|
mopntopon |
|
8 |
7
|
3ad2ant2 |
|
9 |
|
simp3 |
|
10 |
4 6 8 9
|
tgcnp |
|
11 |
|
simpll2 |
|
12 |
|
simplr |
|
13 |
|
simpll3 |
|
14 |
12 13
|
ffvelrnd |
|
15 |
|
simpr |
|
16 |
|
blcntr |
|
17 |
11 14 15 16
|
syl3anc |
|
18 |
|
rpxr |
|
19 |
18
|
adantl |
|
20 |
|
blelrn |
|
21 |
11 14 19 20
|
syl3anc |
|
22 |
|
eleq2 |
|
23 |
|
sseq2 |
|
24 |
23
|
anbi2d |
|
25 |
24
|
rexbidv |
|
26 |
22 25
|
imbi12d |
|
27 |
26
|
rspcv |
|
28 |
21 27
|
syl |
|
29 |
17 28
|
mpid |
|
30 |
|
simpl1 |
|
31 |
30
|
ad2antrr |
|
32 |
|
simplrr |
|
33 |
|
simpr |
|
34 |
1
|
mopni2 |
|
35 |
31 32 33 34
|
syl3anc |
|
36 |
|
sstr2 |
|
37 |
|
imass2 |
|
38 |
36 37
|
syl11 |
|
39 |
38
|
reximdv |
|
40 |
35 39
|
syl5com |
|
41 |
40
|
expimpd |
|
42 |
41
|
expr |
|
43 |
42
|
rexlimdv |
|
44 |
29 43
|
syld |
|
45 |
44
|
ralrimdva |
|
46 |
|
simpl2 |
|
47 |
|
blss |
|
48 |
47
|
3expib |
|
49 |
46 48
|
syl |
|
50 |
|
r19.29r |
|
51 |
30
|
ad5ant12 |
|
52 |
13
|
ad2antrr |
|
53 |
|
rpxr |
|
54 |
53
|
ad2antrl |
|
55 |
1
|
blopn |
|
56 |
51 52 54 55
|
syl3anc |
|
57 |
|
simprl |
|
58 |
|
blcntr |
|
59 |
51 52 57 58
|
syl3anc |
|
60 |
|
sstr |
|
61 |
60
|
ad2ant2l |
|
62 |
61
|
ancoms |
|
63 |
|
eleq2 |
|
64 |
|
imaeq2 |
|
65 |
64
|
sseq1d |
|
66 |
63 65
|
anbi12d |
|
67 |
66
|
rspcev |
|
68 |
56 59 62 67
|
syl12anc |
|
69 |
68
|
expr |
|
70 |
69
|
rexlimdva |
|
71 |
70
|
expimpd |
|
72 |
71
|
rexlimdva |
|
73 |
50 72
|
syl5 |
|
74 |
73
|
expd |
|
75 |
49 74
|
syld |
|
76 |
75
|
com23 |
|
77 |
76
|
exp4a |
|
78 |
77
|
ralrimdv |
|
79 |
45 78
|
impbid |
|
80 |
79
|
pm5.32da |
|
81 |
10 80
|
bitrd |
|