Description: The homomorphic image of a submonoid is a submonoid. (Contributed by Mario Carneiro, 10-Mar-2015) (Proof shortened by AV, 8-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | mhmima | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imassrn | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | 2 3 | mhmf | |
5 | 4 | adantr | |
6 | 5 | frnd | |
7 | 1 6 | sstrid | |
8 | eqid | |
|
9 | eqid | |
|
10 | 8 9 | mhm0 | |
11 | 10 | adantr | |
12 | 5 | ffnd | |
13 | 2 | submss | |
14 | 13 | adantl | |
15 | 8 | subm0cl | |
16 | 15 | adantl | |
17 | fnfvima | |
|
18 | 12 14 16 17 | syl3anc | |
19 | 11 18 | eqeltrrd | |
20 | simpl | |
|
21 | eqidd | |
|
22 | eqidd | |
|
23 | eqid | |
|
24 | 23 | submcl | |
25 | 24 | 3adant1l | |
26 | 20 14 21 22 25 | mhmimalem | |
27 | mhmrcl2 | |
|
28 | 27 | adantr | |
29 | eqid | |
|
30 | 3 9 29 | issubm | |
31 | 28 30 | syl | |
32 | 7 19 26 31 | mpbir3and | |