Metamath Proof Explorer


Theorem mhmima

Description: The homomorphic image of a submonoid is a submonoid. (Contributed by Mario Carneiro, 10-Mar-2015) (Proof shortened by AV, 8-Mar-2025)

Ref Expression
Assertion mhmima FMMndHomNXSubMndMFXSubMndN

Proof

Step Hyp Ref Expression
1 imassrn FXranF
2 eqid BaseM=BaseM
3 eqid BaseN=BaseN
4 2 3 mhmf FMMndHomNF:BaseMBaseN
5 4 adantr FMMndHomNXSubMndMF:BaseMBaseN
6 5 frnd FMMndHomNXSubMndMranFBaseN
7 1 6 sstrid FMMndHomNXSubMndMFXBaseN
8 eqid 0M=0M
9 eqid 0N=0N
10 8 9 mhm0 FMMndHomNF0M=0N
11 10 adantr FMMndHomNXSubMndMF0M=0N
12 5 ffnd FMMndHomNXSubMndMFFnBaseM
13 2 submss XSubMndMXBaseM
14 13 adantl FMMndHomNXSubMndMXBaseM
15 8 subm0cl XSubMndM0MX
16 15 adantl FMMndHomNXSubMndM0MX
17 fnfvima FFnBaseMXBaseM0MXF0MFX
18 12 14 16 17 syl3anc FMMndHomNXSubMndMF0MFX
19 11 18 eqeltrrd FMMndHomNXSubMndM0NFX
20 simpl FMMndHomNXSubMndMFMMndHomN
21 eqidd FMMndHomNXSubMndM+M=+M
22 eqidd FMMndHomNXSubMndM+N=+N
23 eqid +M=+M
24 23 submcl XSubMndMzXxXz+MxX
25 24 3adant1l FMMndHomNXSubMndMzXxXz+MxX
26 20 14 21 22 25 mhmimalem FMMndHomNXSubMndMxFXyFXx+NyFX
27 mhmrcl2 FMMndHomNNMnd
28 27 adantr FMMndHomNXSubMndMNMnd
29 eqid +N=+N
30 3 9 29 issubm NMndFXSubMndNFXBaseN0NFXxFXyFXx+NyFX
31 28 30 syl FMMndHomNXSubMndMFXSubMndNFXBaseN0NFXxFXyFXx+NyFX
32 7 19 26 31 mpbir3and FMMndHomNXSubMndMFXSubMndN